Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions.

Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, Young MJ, McConnell MV, Douglas T.

ACS Nano. 2011 Apr 26;5(4):2493-502. doi: 10.1021/nn102863y. Epub 2011 Mar 21.

2.

Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes.

Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S.

J Am Coll Cardiol. 2011 Jan 18;57(3):337-47. doi: 10.1016/j.jacc.2010.09.023. Epub 2010 Nov 23.

3.

In vivo mapping of vascular inflammation using multimodal imaging.

Jarrett BR, Correa C, Ma KL, Louie AY.

PLoS One. 2010 Oct 11;5(10):e13254. doi: 10.1371/journal.pone.0013254.

4.

Nanoparticle-induced vascular blockade in human prostate cancer.

Agemy L, Sugahara KN, Kotamraju VR, Gujraty K, Girard OM, Kono Y, Mattrey RF, Park JH, Sailor MJ, Jimenez AI, Cativiela C, Zanuy D, Sayago FJ, Aleman C, Nussinov R, Ruoslahti E.

Blood. 2010 Oct 14;116(15):2847-56. doi: 10.1182/blood-2010-03-274258. Epub 2010 Jun 29.

5.

Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs.

Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E.

Science. 2010 May 21;328(5981):1031-5. doi: 10.1126/science.1183057. Epub 2010 Apr 8.

6.

Targeting of drugs and nanoparticles to tumors.

Ruoslahti E, Bhatia SN, Sailor MJ.

J Cell Biol. 2010 Mar 22;188(6):759-68. doi: 10.1083/jcb.200910104. Epub 2010 Mar 15. Review.

7.

Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation.

Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, Ruoslahti E.

Mol Cell Biol. 2010 Mar;30(6):1303-18. doi: 10.1128/MCB.01101-09. Epub 2010 Jan 25. Erratum in: Mol Cell Biol. 2017 Jun 29;37(14 ):.

8.

Cooperative nanomaterial system to sensitize, target, and treat tumors.

Park JH, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E, Bhatia SN, Sailor MJ.

Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):981-6. doi: 10.1073/pnas.0909565107. Epub 2009 Dec 28.

9.

Tissue-penetrating delivery of compounds and nanoparticles into tumors.

Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E.

Cancer Cell. 2009 Dec 8;16(6):510-20. doi: 10.1016/j.ccr.2009.10.013.

10.

18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis.

Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, Aikawa E, Kelly K, Libby P, Weissleder R.

JACC Cardiovasc Imaging. 2009 Oct;2(10):1213-22. doi: 10.1016/j.jcmg.2009.04.016.

11.

High-throughput in vivo screening of targeted molecular imaging agents.

Gagnon MK, Hausner SH, Marik J, Abbey CK, Marshall JF, Sutcliffe JL.

Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17904-9. doi: 10.1073/pnas.0906925106. Epub 2009 Oct 7.

12.

C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration.

Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16157-62. doi: 10.1073/pnas.0908201106. Epub 2009 Sep 2.

13.

Evidence that a C1q/C1qR system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity.

Hosszu KK, Santiago-Schwarz F, Peerschke EI, Ghebrehiwet B.

Innate Immun. 2010 Apr;16(2):115-27. doi: 10.1177/1753425909339815. Epub 2009 Aug 26.

14.

Targeting atherosclerosis by using modular, multifunctional micelles.

Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, Ruoslahti E.

Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9815-9. doi: 10.1073/pnas.0903369106. Epub 2009 Jun 1.

15.

Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature.

Nicol CG, Denby L, Lopez-Franco O, Masson R, Halliday CA, Nicklin SA, Kritz A, Work LM, Baker AH.

FEBS Lett. 2009 Jun 18;583(12):2100-7. doi: 10.1016/j.febslet.2009.05.037. Epub 2009 May 28.

16.

Macrophages: promising targets for the treatment of atherosclerosis.

Wilson HM, Barker RN, Erwig LP.

Curr Vasc Pharmacol. 2009 Apr;7(2):234-43. Review.

PMID:
19356007
17.

Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis.

Hong HY, Lee HY, Kwak W, Yoo J, Na MH, So IS, Kwon TH, Park HS, Huh S, Oh GT, Kwon IC, Kim IS, Lee BH.

J Cell Mol Med. 2008 Oct;12(5B):2003-14. doi: 10.1111/j.1582-4934.2008.00189.x.

18.

Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.

Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R.

Circulation. 2008 Oct 28;118(18):1802-9. doi: 10.1161/CIRCULATIONAHA.108.785881. Epub 2008 Oct 13.

19.

Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma.

Fogal V, Zhang L, Krajewski S, Ruoslahti E.

Cancer Res. 2008 Sep 1;68(17):7210-8. doi: 10.1158/0008-5472.CAN-07-6752.

20.

p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment.

Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, Willette RN, Jucker BM.

Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):265-71. Epub 2007 Dec 27.

Supplemental Content

Support Center