Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 40

1.

The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively.

Anderson SJ, Sikes ML, Zhang Y, French SL, Salgia S, Beyer AL, Nomura M, Schneider DA.

J Biol Chem. 2011 May 27;286(21):18816-24. doi: 10.1074/jbc.M110.202101. Epub 2011 Apr 5.

2.

Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.

Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P.

EMBO J. 2011 Apr 6;30(7):1302-10. doi: 10.1038/emboj.2011.64. Epub 2011 Mar 8.

3.

RNA polymerase and transcription elongation factor Spt4/5 complex structure.

Klein BJ, Bose D, Baker KJ, Yusoff ZM, Zhang X, Murakami KS.

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):546-50. doi: 10.1073/pnas.1013828108. Epub 2010 Dec 27.

4.

Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex.

Missra A, Gilmour DS.

Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11301-6. doi: 10.1073/pnas.1000681107. Epub 2010 Jun 4.

5.

TOR-dependent reduction in the expression level of Rrn3p lowers the activity of the yeast RNA Pol I machinery, but does not account for the strong inhibition of rRNA production.

Philippi A, Steinbauer R, Reiter A, Fath S, Leger-Silvestre I, Milkereit P, Griesenbeck J, Tschochner H.

Nucleic Acids Res. 2010 Sep;38(16):5315-26. doi: 10.1093/nar/gkq264. Epub 2010 Apr 25.

6.

The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis.

Zhang Y, Smith AD 4th, Renfrow MB, Schneider DA.

J Biol Chem. 2010 May 7;285(19):14152-9. doi: 10.1074/jbc.M110.115220. Epub 2010 Mar 18.

7.

Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.

Hirtreiter A, Damsma GE, Cheung AC, Klose D, Grohmann D, Vojnic E, Martin AC, Cramer P, Werner F.

Nucleic Acids Res. 2010 Jul;38(12):4040-51. doi: 10.1093/nar/gkq135. Epub 2010 Mar 2.

8.

The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.

Ding B, LeJeune D, Li S.

J Biol Chem. 2010 Feb 19;285(8):5317-26. doi: 10.1074/jbc.M109.082818. Epub 2009 Dec 30.

9.

Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface.

Wenzel S, Martins BM, Rösch P, Wöhrl BM.

Biochem J. 2009 Dec 23;425(2):373-80. doi: 10.1042/BJ20091422.

PMID:
19860741
10.

Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex.

Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S.

Mol Cell Biol. 2009 Sep;29(17):4852-63. doi: 10.1128/MCB.00609-09. Epub 2009 Jul 6.

11.

Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.

Mooney RA, Schweimer K, Rösch P, Gottesman M, Landick R.

J Mol Biol. 2009 Aug 14;391(2):341-58. doi: 10.1016/j.jmb.2009.05.078. Epub 2009 Jun 3.

12.

Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.

Guo M, Xu F, Yamada J, Egelhofer T, Gao Y, Hartzog GA, Teng M, Niu L.

Structure. 2008 Nov 12;16(11):1649-58. doi: 10.1016/j.str.2008.08.013.

13.

Functional architecture of RNA polymerase I.

Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P.

Cell. 2007 Dec 28;131(7):1260-72.

14.

Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription.

Beckouet F, Labarre-Mariotte S, Albert B, Imazawa Y, Werner M, Gadal O, Nogi Y, Thuriaux P.

Mol Cell Biol. 2008 Mar;28(5):1596-605. Epub 2007 Dec 17.

15.
16.

Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly.

Schneider DA, Michel A, Sikes ML, Vu L, Dodd JA, Salgia S, Osheim YN, Beyer AL, Nomura M.

Mol Cell. 2007 Apr 27;26(2):217-29.

17.

Structural basis for converting a general transcription factor into an operon-specific virulence regulator.

Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV, Vassylyev DG, Artsimovitch I.

Mol Cell. 2007 Apr 13;26(1):117-29.

18.

A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis.

Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V.

Cell Mol Life Sci. 2007 Jan;64(1):29-49. Review.

PMID:
17171232
19.

Breaking barriers to transcription elongation.

Saunders A, Core LJ, Lis JT.

Nat Rev Mol Cell Biol. 2006 Aug;7(8):557-67. Review. No abstract available.

PMID:
16936696
20.

RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing.

Schneider DA, French SL, Osheim YN, Bailey AO, Vu L, Dodd J, Yates JR, Beyer AL, Nomura M.

Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12707-12. Epub 2006 Aug 14.

Supplemental Content

Support Center