Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 20

1.

TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer.

Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD.

J Clin Invest. 2010 Jan;120(1):290-302. doi: 10.1172/JCI39194.

2.

The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.

Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T.

Nat Cell Biol. 2009 Dec;11(12):1487-95. doi: 10.1038/ncb1998.

PMID:
19935649
3.

Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.

Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF.

Cell. 2009 Aug 7;138(3):592-603. doi: 10.1016/j.cell.2009.07.011.

4.

Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.

Polyak K, Weinberg RA.

Nat Rev Cancer. 2009 Apr;9(4):265-73. doi: 10.1038/nrc2620. Review.

PMID:
19262571
5.

The epithelial-mesenchymal transition generates cells with properties of stem cells.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA.

Cell. 2008 May 16;133(4):704-15. doi: 10.1016/j.cell.2008.03.027.

6.

A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells.

Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T.

EMBO Rep. 2008 Jun;9(6):582-9. doi: 10.1038/embor.2008.74.

7.
8.

p53 status correlates with histopathological response in patients with soft tissue sarcomas treated using isolated limb perfusion with TNF-alpha and melphalan.

Muret J, Yacoub M, Terrier P, Drusch F, Laplanche A, Gaudin C, Richon C, Le Péchoux C, Le Cesne A, Lejeune FJ, Tursz T, Fouret P, Bonvalot S, Chouaib S.

Ann Oncol. 2008 Apr;19(4):793-800.

9.

Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA.

Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T.

Mol Cell Biol. 2007 Jan;27(2):662-77.

10.

Complex networks orchestrate epithelial-mesenchymal transitions.

Thiery JP, Sleeman JP.

Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42. Review.

PMID:
16493418
12.

Self-renewal and solid tumor stem cells.

Al-Hajj M, Clarke MF.

Oncogene. 2004 Sep 20;23(43):7274-82. Review.

PMID:
15378087
13.
14.
15.

The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth.

Cadwell C, Zambetti GP.

Gene. 2001 Oct 17;277(1-2):15-30. Review.

PMID:
11602342
16.

Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling.

Xirodimas DP, Lane DP.

J Biol Chem. 1999 Sep 24;274(39):28042-9.

17.

A third-generation lentivirus vector with a conditional packaging system.

Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L.

J Virol. 1998 Nov;72(11):8463-71.

18.

Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts.

Nielsen LL, Dell J, Maxwell E, Armstrong L, Maneval D, Catino JJ.

Cancer Gene Ther. 1997 Mar-Apr;4(2):129-38.

PMID:
9080122
19.

Tumor spectrum analysis in p53-mutant mice.

Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA.

Curr Biol. 1994 Jan 1;4(1):1-7.

PMID:
7922305
20.

Tumor suppressor p53: analysis of wild-type and mutant p53 complexes.

Milner J, Medcalf EA, Cook AC.

Mol Cell Biol. 1991 Jan;11(1):12-9.

Items per page

Supplemental Content

Support Center