Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 17

1.

PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.

Martin N, Schwamborn K, Schreiber V, Werner A, Guillier C, Zhang XD, Bischof O, Seeler JS, Dejean A.

EMBO J. 2009 Nov 18;28(22):3534-48. doi: 10.1038/emboj.2009.279. Epub 2009 Sep 24.

2.

Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.

Messner S, Schuermann D, Altmeyer M, Kassner I, Schmidt D, Schär P, Müller S, Hottiger MO.

FASEB J. 2009 Nov;23(11):3978-89. doi: 10.1096/fj.09-137695. Epub 2009 Jul 21.

PMID:
19622798
3.

System-wide changes to SUMO modifications in response to heat shock.

Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT.

Sci Signal. 2009 May 26;2(72):ra24. doi: 10.1126/scisignal.2000282.

4.

SUMO modification of PCNA is controlled by DNA.

Parker JL, Bucceri A, Davies AA, Heidrich K, Windecker H, Ulrich HD.

EMBO J. 2008 Sep 17;27(18):2422-31. doi: 10.1038/emboj.2008.162. Epub 2008 Aug 14.

5.

RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.

Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT.

Nat Cell Biol. 2008 May;10(5):538-46. doi: 10.1038/ncb1716. Epub 2008 Apr 13.

PMID:
18408734
6.

Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae.

Windecker H, Ulrich HD.

J Mol Biol. 2008 Feb 8;376(1):221-31. Epub 2007 Dec 8.

PMID:
18155241
7.
8.

In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy.

Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC.

Mol Cell Proteomics. 2008 Jan;7(1):132-44. Epub 2007 Oct 15.

9.

The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint.

Schwartz DC, Felberbaum R, Hochstrasser M.

Mol Cell Biol. 2007 Oct;27(19):6948-61. Epub 2007 Jul 30.

10.

SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae.

Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF.

Genes Dev. 2006 Aug 1;20(15):2067-81. Epub 2006 Jul 17.

11.

Specification of SUMO1- and SUMO2-interacting motifs.

Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I.

J Biol Chem. 2006 Jun 9;281(23):16117-27. Epub 2006 Mar 8.

12.

PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes.

Azuma Y, Arnaoutov A, Anan T, Dasso M.

EMBO J. 2005 Jun 15;24(12):2172-82. Epub 2005 Jun 2.

13.

Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.

Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y.

Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14373-8. Epub 2004 Sep 23.

14.

SUMO modification of heterogeneous nuclear ribonucleoproteins.

Vassileva MT, Matunis MJ.

Mol Cell Biol. 2004 May;24(9):3623-32.

15.

The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast.

Bylebyl GR, Belichenko I, Johnson ES.

J Biol Chem. 2003 Nov 7;278(45):44113-20. Epub 2003 Aug 26.

16.

Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9.

Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT.

J Biol Chem. 2001 Sep 21;276(38):35368-74. Epub 2001 Jul 12.

17.

Supplemental Content

Support Center