Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes.

Rha J, Dubis AM, Wagner-Schuman M, Tait DM, Godara P, Schroeder B, Stepien K, Carroll J.

Adv Exp Med Biol. 2010;664:309-16. doi: 10.1007/978-1-4419-1399-9_35.

2.

Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software.

DeBuc DC, Somfai GM, Ranganathan S, Tátrai E, Ferencz M, Puliafito CA.

J Biomed Opt. 2009 Nov-Dec;14(6):064023. doi: 10.1117/1.3268773.

3.

Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness.

Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS.

Retina. 2010 Feb;30(2):235-45. doi: 10.1097/IAE.0b013e3181bd2c3b.

4.

Retinal imaging using commercial broadband optical coherence tomography.

Tanna H, Dubis AM, Ayub N, Tait DM, Rha J, Stepien KE, Carroll J.

Br J Ophthalmol. 2010 Mar;94(3):372-6. doi: 10.1136/bjo.2009.163501. Epub 2009 Sep 21.

5.

Interpretation of fovea center morphologic features in optical coherence tomography.

Byeon SH, Chu YK.

Am J Ophthalmol. 2009 Sep;148(3):474-5; author reply 475. doi: 10.1016/j.ajo.2009.05.017. No abstract available.

PMID:
19703615
6.

Reconstructing foveal pit morphology from optical coherence tomography imaging.

Dubis AM, McAllister JT, Carroll J.

Br J Ophthalmol. 2009 Sep;93(9):1223-7. doi: 10.1136/bjo.2008.150110. Epub 2009 May 26.

7.

Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy.

Matsumoto H, Sato T, Kishi S.

Am J Ophthalmol. 2009 Jul;148(1):105-10.e1. doi: 10.1016/j.ajo.2009.01.018. Epub 2009 Mar 27.

PMID:
19327740
8.

Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography.

Schuman SG, Koreishi AF, Farsiu S, Jung SH, Izatt JA, Toth CA.

Ophthalmology. 2009 Mar;116(3):488-496.e2. doi: 10.1016/j.ophtha.2008.10.006. Epub 2009 Jan 22.

9.

Thickness profiles of retinal layers by optical coherence tomography image segmentation.

Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R.

Am J Ophthalmol. 2008 Nov;146(5):679-87. doi: 10.1016/j.ajo.2008.06.010. Epub 2008 Aug 15.

10.

Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images.

Christensen UC, Kroyer K, Thomadsen J, Jorgensen TM, la Cour M, Sander B.

Br J Ophthalmol. 2008 Jun;92(6):800-5. doi: 10.1136/bjo.2007.130500.

PMID:
18523085
11.

Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography.

Gao W, Cense B, Zhang Y, Jonnal RS, Miller DT.

Opt Express. 2008 Apr 28;16(9):6486-501. doi: 10.1364/OE.16.006486.

12.

Automated detection of foveal fixation by use of retinal birefringence scanning.

Hunter DG, Patel SN, Guyton DL.

Appl Opt. 1999 Mar 1;38(7):1273-9.

PMID:
18305742
13.

Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.

Jørgensen TM, Thomadsen J, Christensen U, Soliman W, Sander B.

J Biomed Opt. 2007 Jul-Aug;12(4):041208.

PMID:
17867797
14.

The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field.

Drasdo N, Millican CL, Katholi CR, Curcio CA.

Vision Res. 2007 Oct;47(22):2901-11. Epub 2007 Feb 22.

15.

Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology.

Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS.

Ophthalmology. 2005 Nov;112(11):1922.e1-15. Epub 2005 Sep 23.

16.

Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography.

Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko TH, Sattmann H, Scholda C, Fujimoto JG, Stur M, Drexler W.

Invest Ophthalmol Vis Sci. 2005 Jan;46(1):310-6.

PMID:
15623790
17.

Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections.

Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W.

Exp Eye Res. 2004 Jun;78(6):1117-25.

PMID:
15109918
18.

In vivo human retinal imaging by Fourier domain optical coherence tomography.

Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF.

J Biomed Opt. 2002 Jul;7(3):457-63.

PMID:
12175297
20.

Directional and spectral reflectance of the rat retinal nerve fiber layer.

Knighton RW, Huang XR.

Invest Ophthalmol Vis Sci. 1999 Mar;40(3):639-47.

PMID:
10067967

Supplemental Content

Support Center