Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

ERK1/2 signaling dominates over RhoA signaling in regulating early changes in RNA expression induced by endothelin-1 in neonatal rat cardiomyocytes.

Marshall AK, Barrett OP, Cullingford TE, Shanmugasundram A, Sugden PH, Clerk A.

PLoS One. 2010 Apr 2;5(4):e10027. doi: 10.1371/journal.pone.0010027.

2.

p38alpha is active in vitro and in vivo when monophosphorylated at threonine 180.

Askari N, Beenstock J, Livnah O, Engelberg D.

Biochemistry. 2009 Mar 24;48(11):2497-504. doi: 10.1021/bi900024v.

PMID:
19209848
3.

Crystal structure of human mono-phosphorylated ERK1 at Tyr204.

Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T.

Biochem Biophys Res Commun. 2008 Dec 26;377(4):1123-7. doi: 10.1016/j.bbrc.2008.10.127. Epub 2008 Nov 5.

PMID:
18983981
4.

Nuclear Dbf2-related protein kinases (NDRs) in isolated cardiac myocytes and the myocardium: activation by cellular stresses and by phosphoprotein serine-/threonine-phosphatase inhibitors.

Fuller SJ, Pikkarainen S, Tham el L, Cullingford TE, Molkentin JD, Cornils H, Hergovich A, Hemmings BA, Clerk A, Sugden PH.

Cell Signal. 2008 Aug;20(8):1564-77. doi: 10.1016/j.cellsig.2008.04.013. Epub 2008 May 1.

PMID:
18555663
5.

The roles of MAPKs in disease.

Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH.

Cell Res. 2008 Apr;18(4):436-42. doi: 10.1038/cr.2008.37. Review.

6.

Temporal regulation of expression of immediate early and second phase transcripts by endothelin-1 in cardiomyocytes.

Cullingford TE, Markou T, Fuller SJ, Giraldo A, Pikkarainen S, Zoumpoulidou G, Alsafi A, Ekere C, Kemp TJ, Dennis JL, Game L, Sugden PH, Clerk A.

Genome Biol. 2008;9(2):R32. doi: 10.1186/gb-2008-9-2-r32. Epub 2008 Feb 14.

7.

Integrating signals from RTKs to ERK/MAPK.

McKay MM, Morrison DK.

Oncogene. 2007 May 14;26(22):3113-21. Review.

PMID:
17496910
8.

Differential regulation and properties of MAPKs.

Raman M, Chen W, Cobb MH.

Oncogene. 2007 May 14;26(22):3100-12. Review.

PMID:
17496909
9.
10.

Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinases in neonatal cardiomyocytes.

Clerk A, Aggeli IK, Stathopoulou K, Sugden PH.

Cell Signal. 2006 Feb;18(2):225-35. Epub 2005 Jun 3.

PMID:
15936927
11.

Protein phosphatase 2A activity associated with Golgi membranes during the G2/M phase may regulate phosphorylation of ERK2.

Hancock CN, Dangi S, Shapiro P.

J Biol Chem. 2005 Mar 25;280(12):11590-8. Epub 2005 Jan 14.

12.

Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity.

Bell M, Engelberg D.

J Biol Chem. 2003 Apr 25;278(17):14603-6. Epub 2003 Mar 10.

13.
14.

MAP kinases.

Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH.

Chem Rev. 2001 Aug;101(8):2449-76. Review. No abstract available.

PMID:
11749383
16.

Cell signaling by receptor tyrosine kinases.

Schlessinger J.

Cell. 2000 Oct 13;103(2):211-25. Review. No abstract available.

17.

Mechanism of activation of ERK2 by dual phosphorylation.

Prowse CN, Lew J.

J Biol Chem. 2001 Jan 5;276(1):99-103.

18.

ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK.

Yung Y, Yao Z, Hanoch T, Seger R.

J Biol Chem. 2000 May 26;275(21):15799-808.

19.

Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases.

Yao Z, Dolginov Y, Hanoch T, Yung Y, Ridner G, Lando Z, Zharhary D, Seger R.

FEBS Lett. 2000 Feb 18;468(1):37-42.

Supplemental Content

Support Center