Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Damage-induced phosphorylation of Sld3 is important to block late origin firing.

Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP.

Nature. 2010 Sep 23;467(7314):479-83. doi: 10.1038/nature09377.

2.

Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.

Zegerman P, Diffley JF.

Nature. 2010 Sep 23;467(7314):474-8. doi: 10.1038/nature09373. Epub 2010 Sep 12.

3.

A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint.

van Vugt MA, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE, Tan CS, Miao H, Keezer SM, Li J, Pawson T, Lewis TA, Carr SA, Smerdon SJ, Brummelkamp TR, Yaffe MB.

PLoS Biol. 2010 Jan 26;8(1):e1000287. doi: 10.1371/journal.pbio.1000287.

4.

CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.

Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP.

PLoS Biol. 2010 Jan 26;8(1):e1000286. doi: 10.1371/journal.pbio.1000286.

5.

The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms.

Navadgi-Patil VM, Burgers PM.

Mol Cell. 2009 Dec 11;36(5):743-53. doi: 10.1016/j.molcel.2009.10.014.

6.

TopBP1 activates ATR through ATRIP and a PIKK regulatory domain.

Mordes DA, Glick GG, Zhao R, Cortez D.

Genes Dev. 2008 Jun 1;22(11):1478-89. doi: 10.1101/gad.1666208.

7.

Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage.

Bonilla CY, Melo JA, Toczyski DP.

Mol Cell. 2008 May 9;30(3):267-76. doi: 10.1016/j.molcel.2008.03.023.

8.

The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint.

Majka J, Niedziela-Majka A, Burgers PM.

Mol Cell. 2006 Dec 28;24(6):891-901.

9.

TopBP1 activates the ATR-ATRIP complex.

Kumagai A, Lee J, Yoo HY, Dunphy WG.

Cell. 2006 Mar 10;124(5):943-55.

10.

Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1.

Ma JL, Lee SJ, Duong JK, Stern DF.

J Biol Chem. 2006 Feb 17;281(7):3954-63. Epub 2005 Dec 19.

11.

Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.

Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D.

Curr Biol. 2005 Aug 9;15(15):1364-75.

12.

Getting in and out of mitosis with Polo-like kinase-1.

van Vugt MA, Medema RH.

Oncogene. 2005 Apr 18;24(17):2844-59. Review.

PMID:
15838519
13.

Regulation of protein kinases; controlling activity through activation segment conformation.

Nolen B, Taylor S, Ghosh G.

Mol Cell. 2004 Sep 10;15(5):661-75. Review.

14.

Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling.

Lee SJ, Schwartz MF, Duong JK, Stern DF.

Mol Cell Biol. 2003 Sep;23(17):6300-14.

15.

Two checkpoint complexes are independently recruited to sites of DNA damage in vivo.

Melo JA, Cohen J, Toczyski DP.

Genes Dev. 2001 Nov 1;15(21):2809-21.

16.

Budding yeast Rad9 is an ATP-dependent Rad53 activating machine.

Gilbert CS, Green CM, Lowndes NF.

Mol Cell. 2001 Jul;8(1):129-36.

17.
18.

Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase.

Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M.

EMBO J. 1999 Nov 15;18(22):6561-72.

19.

Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway.

Kondo T, Matsumoto K, Sugimoto K.

Mol Cell Biol. 1999 Feb;19(2):1136-43.

20.

Supplemental Content

Support Center