Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Functional osteoclast attachment requires inositol-1,4,5-trisphosphate receptor-associated cGMP-dependent kinase substrate.

Yaroslavskiy BB, Turkova I, Wang Y, Robinson LJ, Blair HC.

Lab Invest. 2010 Oct;90(10):1533-42. doi: 10.1038/labinvest.2010.120. Epub 2010 Jun 21.

2.

Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis.

Yule DI, Betzenhauser MJ, Joseph SK.

Cell Calcium. 2010 Jun;47(6):469-79. doi: 10.1016/j.ceca.2010.04.005. Epub 2010 May 26. Review.

3.

IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation.

Desch M, Sigl K, Hieke B, Salb K, Kees F, Bernhard D, Jochim A, Spiessberger B, Höcherl K, Feil R, Feil S, Lukowski R, Wegener JW, Hofmann F, Schlossmann J.

Cardiovasc Res. 2010 Jun 1;86(3):496-505. doi: 10.1093/cvr/cvq008. Epub 2010 Jan 15.

PMID:
20080989
4.

Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937.

Betzenhauser MJ, Fike JL, Wagner LE 2nd, Yule DI.

J Biol Chem. 2009 Sep 11;284(37):25116-25. doi: 10.1074/jbc.M109.010132. Epub 2009 Jul 16.

5.

ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs.

Betzenhauser MJ, Wagner LE 2nd, Park HS, Yule DI.

J Biol Chem. 2009 Jun 12;284(24):16156-63. doi: 10.1074/jbc.M109.006452. Epub 2009 Apr 22.

6.

Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation.

Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB.

Biochim Biophys Acta. 2009 Jun;1793(6):959-70. doi: 10.1016/j.bbamcr.2008.12.003. Epub 2008 Dec 16. Review.

7.

cGMP regulated protein kinases (cGK).

Hofmann F, Bernhard D, Lukowski R, Weinmeister P.

Handb Exp Pharmacol. 2009;(191):137-62. doi: 10.1007/978-3-540-68964-5_8. Review.

PMID:
19089329
8.

Studying isoform-specific inositol 1,4,5-trisphosphate receptor function and regulation.

Betzenhauser MJ, Wagner LE 2nd, Won JH, Yule DI.

Methods. 2008 Nov;46(3):177-82. doi: 10.1016/j.ymeth.2008.09.014. Epub 2008 Oct 16.

9.

Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation.

Wagner LE 2nd, Joseph SK, Yule DI.

J Physiol. 2008 Aug 1;586(15):3577-96. doi: 10.1113/jphysiol.2008.152314. Epub 2008 Jun 5.

10.

ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action.

Betzenhauser MJ, Wagner LE 2nd, Iwai M, Michikawa T, Mikoshiba K, Yule DI.

J Biol Chem. 2008 Aug 1;283(31):21579-87. doi: 10.1074/jbc.M801680200. Epub 2008 May 27.

11.

Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains.

Willoughby D, Cooper DM.

Physiol Rev. 2007 Jul;87(3):965-1010. Review.

12.

Inositol trisphosphate receptor Ca2+ release channels.

Foskett JK, White C, Cheung KH, Mak DO.

Physiol Rev. 2007 Apr;87(2):593-658. Review.

13.
15.

IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation.

Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J.

Blood. 2007 Jan 15;109(2):552-9. Epub 2006 Sep 21.

16.
17.

IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase.

Geiselhöringer A, Werner M, Sigl K, Smital P, Wörner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J.

EMBO J. 2004 Oct 27;23(21):4222-31. Epub 2004 Oct 14.

18.

Distribution of IRAG and cGKI-isoforms in murine tissues.

Geiselhöringer A, Gaisa M, Hofmann F, Schlossmann J.

FEBS Lett. 2004 Sep 24;575(1-3):19-22.

19.
20.

Inositol 1,4,5-trisphosphate receptors as signal integrators.

Patterson RL, Boehning D, Snyder SH.

Annu Rev Biochem. 2004;73:437-65. Review.

PMID:
15189149

Supplemental Content

Support Center