Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31


X-inactivation analysis of embryonic lethality in Ocrl wt/-; Inpp5b-/- mice.

Bernard DJ, Nussbaum RL.

Mamm Genome. 2010 Apr;21(3-4):186-94. doi: 10.1007/s00335-010-9255-9. Epub 2010 Feb 27.


Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1.

Swan LE, Tomasini L, Pirruccello M, Lunardi J, De Camilli P.

Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3511-6. doi: 10.1073/pnas.0914658107. Epub 2010 Feb 2.


Lowe syndrome patient fibroblasts display Ocrl1-specific cell migration defects that cannot be rescued by the homologous Inpp5b phosphatase.

Coon BG, Mukherjee D, Hanna CB, Riese DJ 2nd, Lowe M, Aguilar RC.

Hum Mol Genet. 2009 Dec 1;18(23):4478-91. doi: 10.1093/hmg/ddp407. Epub 2009 Aug 21.


A single nucleotide polymorphism in the 3'UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease.

Sotiriou S, Gibney G, Baxevanis AD, Nussbaum RL.

Neurosci Lett. 2009 Sep 18;461(2):196-201. doi: 10.1016/j.neulet.2009.06.034. Epub 2009 Jun 18.


A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism.

Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P.

EMBO J. 2009 Jul 8;28(13):1831-42. doi: 10.1038/emboj.2009.155. Epub 2009 Jun 18.


Differential clathrin binding and subcellular localization of OCRL1 splice isoforms.

Choudhury R, Noakes CJ, McKenzie E, Kox C, Lowe M.

J Biol Chem. 2009 Apr 10;284(15):9965-73. doi: 10.1074/jbc.M807442200. Epub 2009 Feb 11.


Renal phenotype in Lowe Syndrome: a selective proximal tubular dysfunction.

Bockenhauer D, Bokenkamp A, van't Hoff W, Levtchenko E, Kist-van Holthe JE, Tasic V, Ludwig M.

Clin J Am Soc Nephrol. 2008 Sep;3(5):1430-6. doi: 10.2215/CJN.00520108. Epub 2008 May 14.


All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding.

McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P.

Biochem Biophys Res Commun. 2008 May 2;369(2):493-9. doi: 10.1016/j.bbrc.2008.02.067. Epub 2008 Feb 26.


Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway.

Williams C, Choudhury R, McKenzie E, Lowe M.

J Cell Sci. 2007 Nov 15;120(Pt 22):3941-51. Epub 2007 Oct 23.


A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway.

Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P.

Dev Cell. 2007 Sep;13(3):377-90.


The effect of missense mutations in the RhoGAP-homology domain on ocrl1 function.

Lichter-Konecki U, Farber LW, Cronin JS, Suchy SF, Nussbaum RL.

Mol Genet Metab. 2006 Sep-Oct;89(1-2):121-8. Epub 2006 Jun 13.


A novel domain suggests a ciliary function for ASPM, a brain size determining gene.

Ponting CP.

Bioinformatics. 2006 May 1;22(9):1031-5. Epub 2006 Jan 27.


Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network.

Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M.

Mol Biol Cell. 2005 Aug;16(8):3467-79. Epub 2005 May 25.


Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation.

Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R.

FEBS Lett. 2004 Oct 8;576(1-2):9-13.


Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network.

Faucherre A, Desbois P, Satre V, Lunardi J, Dorseuil O, Gacon G.

Hum Mol Genet. 2003 Oct 1;12(19):2449-56. Epub 2003 Jul 29.


Listening to silence and understanding nonsense: exonic mutations that affect splicing.

Cartegni L, Chew SL, Krainer AR.

Nat Rev Genet. 2002 Apr;3(4):285-98. Review.


SpliceDB: database of canonical and non-canonical mammalian splice sites.

Burset M, Seledtsov IA, Solovyev VV.

Nucleic Acids Res. 2001 Jan 1;29(1):255-9.


OCRL1 mutation analysis in French Lowe syndrome patients: implications for molecular diagnosis strategy and genetic counseling.

Monnier N, Satre V, Lerouge E, Berthoin F, Lunardi J.

Hum Mutat. 2000;16(2):157-65.


Mutations are not uniformly distributed throughout the OCRL1 gene in Lowe syndrome patients.

Lin T, Orrison BM, Suchy SF, Lewis RA, Nussbaum RL.

Mol Genet Metab. 1998 May;64(1):58-61.


Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice.

Jänne PA, Suchy SF, Bernard D, MacDonald M, Crawley J, Grinberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL.

J Clin Invest. 1998 May 15;101(10):2042-53.

Supplemental Content

Support Center