Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 60

1.

A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring.

Preiss L, Yildiz O, Hicks DB, Krulwich TA, Meier T.

PLoS Biol. 2010 Aug 3;8(8):e1000443. doi: 10.1371/journal.pbio.1000443.

2.

Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel.

Mitome N, Ono S, Sato H, Suzuki T, Sone N, Yoshida M.

Biochem J. 2010 Aug 15;430(1):171-7. doi: 10.1042/BJ20100621.

PMID:
20518749
3.

F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.

Hicks DB, Liu J, Fujisawa M, Krulwich TA.

Biochim Biophys Acta. 2010 Aug;1797(8):1362-77. doi: 10.1016/j.bbabio.2010.02.028. Epub 2010 Mar 1. Review.

4.

The mechanism of rotating proton pumping ATPases.

Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M.

Biochim Biophys Acta. 2010 Aug;1797(8):1343-52. doi: 10.1016/j.bbabio.2010.02.014. Epub 2010 Feb 17. Review.

5.

Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor.

Lau WC, Rubinstein JL.

Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1367-72. doi: 10.1073/pnas.0911085107. Epub 2010 Jan 6.

6.

Nonfermentative thermoalkaliphilic growth is restricted to alkaline environments.

McMillan DG, Keis S, Berney M, Cook GM.

Appl Environ Microbiol. 2009 Dec;75(24):7649-54. doi: 10.1128/AEM.01639-09. Epub 2009 Oct 23.

7.

Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase.

Steed PR, Fillingame RH.

J Biol Chem. 2009 Aug 28;284(35):23243-50. doi: 10.1074/jbc.M109.002501. Epub 2009 Jun 19.

8.

Essentials for ATP synthesis by F1F0 ATP synthases.

von Ballmoos C, Wiedenmann A, Dimroth P.

Annu Rev Biochem. 2009;78:649-72. doi: 10.1146/annurev.biochem.78.081307.104803. Review.

PMID:
19489730
9.

Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.

Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM.

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1760-5. doi: 10.1073/pnas.0813167106. Epub 2009 Jan 30.

10.

Characterization of the Functionally Critical AXAXAXA and PXXEXXP Motifs of the ATP Synthase c-Subunit from an Alkaliphilic Bacillus.

Liu J, Fujisawa M, Hicks DB, Krulwich TA.

J Biol Chem. 2009 Mar 27;284(13):8714-25. doi: 10.1074/jbc.M808738200. Epub 2009 Jan 28.

11.

Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase.

Moore KJ, Fillingame RH.

J Biol Chem. 2008 Nov 14;283(46):31726-35. doi: 10.1074/jbc.M803848200. Epub 2008 Sep 11.

12.

Unique rotary ATP synthase and its biological diversity.

von Ballmoos C, Cook GM, Dimroth P.

Annu Rev Biophys. 2008;37:43-64. doi: 10.1146/annurev.biophys.37.032807.130018. Review.

PMID:
18573072
13.

The rotary mechanism of the ATP synthase.

Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK.

Arch Biochem Biophys. 2008 Aug 1;476(1):43-50. doi: 10.1016/j.abb.2008.05.004. Epub 2008 May 20. Review.

14.

Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase.

Vorburger T, Ebneter JZ, Wiedenmann A, Morger D, Weber G, Diederichs K, Dimroth P, von Ballmoos C.

FEBS J. 2008 May;275(9):2137-50. doi: 10.1111/j.1742-4658.2008.06368.x. Epub 2007 Mar 31.

15.

The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism.

Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH.

J Biol Chem. 2008 May 9;283(19):13044-52. doi: 10.1074/jbc.M800900200. Epub 2008 Mar 12.

16.

Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase.

Steed PR, Fillingame RH.

J Biol Chem. 2008 May 2;283(18):12365-72. doi: 10.1074/jbc.M800901200. Epub 2008 Mar 10.

17.

The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.

Stocker A, Keis S, Vonck J, Cook GM, Dimroth P.

Structure. 2007 Aug;15(8):904-14.

18.

A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential.

Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P, Brutschy B.

Mol Microbiol. 2007 Sep;65(5):1181-92. Epub 2007 Jul 21.

19.
20.

The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15.

Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ, Dimroth P, Meier T.

J Bacteriol. 2007 Aug;189(16):5895-902. Epub 2007 Jun 1.

Supplemental Content

Support Center