Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice.

Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP.

J Clin Invest. 2009 Sep;119(9):2758-71. doi: 10.1172/JCI39162. Epub 2009 Aug 3.

2.

A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein.

Cooper HM, Huang JY, Verdin E, Spelbrink JN.

PLoS One. 2009;4(3):e4986. doi: 10.1371/journal.pone.0004986. Epub 2009 Mar 31.

3.

Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3.

Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, Hoffmann E, Carney DP, Perni RB, Jirousek MR, Bemis JE, Milne JC, Sinclair DA, Westphal CH.

Protein Sci. 2009 Mar;18(3):514-25. doi: 10.1002/pro.50.

4.

A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.

Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52. doi: 10.1073/pnas.0803790105. Epub 2008 Sep 15.

5.

SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression.

Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, Deng CX, Spitz DR, Gius D.

Int J Biol Sci. 2008 Sep 5;4(5):291-9.

6.

Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli.

Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y.

Mol Cell Proteomics. 2009 Feb;8(2):215-25. doi: 10.1074/mcp.M800187-MCP200. Epub 2008 Aug 23.

7.

SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70.

Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP.

Mol Cell Biol. 2008 Oct;28(20):6384-401. doi: 10.1128/MCB.00426-08. Epub 2008 Aug 18.

8.

Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.

Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C.

J Mol Biol. 2008 Oct 10;382(3):790-801. doi: 10.1016/j.jmb.2008.07.048. Epub 2008 Jul 25.

PMID:
18680753
9.

SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells.

Lynn EG, McLeod CJ, Gordon JP, Bao J, Sack MN.

FEBS Lett. 2008 Aug 20;582(19):2857-62. doi: 10.1016/j.febslet.2008.07.016. Epub 2008 Jul 18.

10.

Where in the cell is SIRT3?--functional localization of an NAD+-dependent protein deacetylase.

Hallows WC, Albaugh BN, Denu JM.

Biochem J. 2008 Apr 15;411(2):e11-3. doi: 10.1042/BJ20080336.

11.

Conserved metabolic regulatory functions of sirtuins.

Schwer B, Verdin E.

Cell Metab. 2008 Feb;7(2):104-12. doi: 10.1016/j.cmet.2007.11.006. Review.

12.

The human SIRT3 protein deacetylase is exclusively mitochondrial.

Cooper HM, Spelbrink JN.

Biochem J. 2008 Apr 15;411(2):279-85. doi: 10.1042/BJ20071624.

PMID:
18215119
13.

Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5.

Nakamura Y, Ogura M, Tanaka D, Inagaki N.

Biochem Biophys Res Commun. 2008 Feb 1;366(1):174-9. Epub 2007 Dec 3.

PMID:
18054327
14.

Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.

Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B.

Mol Cell Biol. 2007 Dec;27(24):8807-14. Epub 2007 Oct 8.

15.
16.

Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction.

Haigis MC, Guarente LP.

Genes Dev. 2006 Nov 1;20(21):2913-21. Review.

17.

Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.

Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA.

Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36. Epub 2006 Sep 13.

18.

Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.

Mol Cell. 2006 Aug;23(4):607-18.

19.

Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.

Hallows WC, Lee S, Denu JM.

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-5. Epub 2006 Jun 21.

20.

Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.

Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E.

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-9. Epub 2006 Jun 20.

Supplemental Content

Support Center