Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.

Simonović M, Steitz TA.

Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):612-23. doi: 10.1016/j.bbagrm.2009.06.006. Epub 2009 Jul 9. Review.

2.

The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel.

Yap MN, Bernstein HD.

Mol Cell. 2009 Apr 24;34(2):201-11. doi: 10.1016/j.molcel.2009.04.002.

3.

23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

Yang R, Cruz-Vera LR, Yanofsky C.

J Bacteriol. 2009 Jun;191(11):3445-50. doi: 10.1128/JB.00096-09. Epub 2009 Mar 27.

4.

Insights into translational termination from the structure of RF2 bound to the ribosome.

Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V.

Science. 2008 Nov 7;322(5903):953-6. doi: 10.1126/science.1164840.

5.

Electrostatics in the ribosomal tunnel modulate chain elongation rates.

Lu J, Deutsch C.

J Mol Biol. 2008 Dec 5;384(1):73-86. doi: 10.1016/j.jmb.2008.08.089. Epub 2008 Sep 16.

6.

Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.

Trabuco LG, Villa E, Mitra K, Frank J, Schulten K.

Structure. 2008 May;16(5):673-83. doi: 10.1016/j.str.2008.03.005.

7.

Molecular mechanism of drug-dependent ribosome stalling.

Vazquez-Laslop N, Thum C, Mankin AS.

Mol Cell. 2008 Apr 25;30(2):190-202. doi: 10.1016/j.molcel.2008.02.026.

8.

Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression.

Cruz-Vera LR, Yanofsky C.

J Bacteriol. 2008 Jul;190(14):4791-7. doi: 10.1128/JB.00290-08. Epub 2008 Apr 18.

9.

Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.

Cruz-Vera LR, New A, Squires C, Yanofsky C.

J Bacteriol. 2007 Apr;189(8):3140-6. Epub 2007 Feb 9.

10.

Translation arrest requires two-way communication between a nascent polypeptide and the ribosome.

Woolhead CA, Johnson AE, Bernstein HD.

Mol Cell. 2006 Jun 9;22(5):587-98.

11.

Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.

Mitra K, Schaffitzel C, Fabiola F, Chapman MS, Ban N, Frank J.

Mol Cell. 2006 May 19;22(4):533-43.

12.

Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.

Cruz-Vera LR, Gong M, Yanofsky C.

Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3598-603. Epub 2006 Feb 27.

13.

Conformer generation under restraints.

de Bakker PI, Furnham N, Blundell TL, DePristo MA.

Curr Opin Struct Biol. 2006 Apr;16(2):160-5. Epub 2006 Feb 17. Review.

PMID:
16483766
14.

An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA.

Schmeing TM, Huang KS, Strobel SA, Steitz TA.

Nature. 2005 Nov 24;438(7067):520-4.

PMID:
16306996
15.

Folding zones inside the ribosomal exit tunnel.

Lu J, Deutsch C.

Nat Struct Mol Biol. 2005 Dec;12(12):1123-9. Epub 2005 Nov 20.

PMID:
16299515
16.

Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.

Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA.

Mol Cell. 2005 Nov 11;20(3):437-48.

17.

Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression.

Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C.

Mol Cell. 2005 Aug 5;19(3):333-43.

18.

Secondary structure formation of a transmembrane segment in Kv channels.

Lu J, Deutsch C.

Biochemistry. 2005 Jun 14;44(23):8230-43.

PMID:
15938612
20.

Instruction of translating ribosome by nascent peptide.

Gong F, Yanofsky C.

Science. 2002 Sep 13;297(5588):1864-7.

Supplemental Content

Support Center