Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase.

Helland R, Larsen RL, Asgeirsson B.

Biochim Biophys Acta. 2009 Feb;1794(2):297-308. doi: 10.1016/j.bbapap.2008.09.020. Epub 2008 Oct 15.

PMID:
18977465
2.

Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.

Zalatan JG, Fenn TD, Herschlag D.

J Mol Biol. 2008 Dec 31;384(5):1174-89. doi: 10.1016/j.jmb.2008.09.059. Epub 2008 Oct 2.

3.

Physical basis of structural and catalytic Zn-binding sites in proteins.

Lee YM, Lim C.

J Mol Biol. 2008 Jun 6;379(3):545-53. doi: 10.1016/j.jmb.2008.04.004. Epub 2008 Apr 8.

PMID:
18462757
4.

Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase.

Koutsioulis D, Wang E, Tzanodaskalaki M, Nikiforaki D, Deli A, Feller G, Heikinheimo P, Bouriotis V.

Protein Eng Des Sel. 2008 May;21(5):319-27. doi: 10.1093/protein/gzn009.

5.

Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

Dokmanić I, Sikić M, Tomić S.

Acta Crystallogr D Biol Crystallogr. 2008 Mar;64(Pt 3):257-63. doi: 10.1107/S090744490706595X. Epub 2008 Feb 20.

PMID:
18323620
6.

A complete structural description of the catalytic cycle of yeast pyrophosphatase.

Oksanen E, Ahonen AK, Tuominen H, Tuominen V, Lahti R, Goldman A, Heikinheimo P.

Biochemistry. 2007 Feb 6;46(5):1228-39.

PMID:
17260952
7.

Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5.

Wang E, Koutsioulis D, Leiros HK, Andersen OA, Bouriotis V, Hough E, Heikinheimo P.

J Mol Biol. 2007 Mar 2;366(4):1318-31. Epub 2006 Dec 2.

PMID:
17198711
8.

Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.

Painter J, Merritt EA.

Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):439-50. Epub 2006 Mar 18.

PMID:
16552146
9.

Structural studies of human placental alkaline phosphatase in complex with functional ligands.

Llinas P, Stura EA, Ménez A, Kiss Z, Stigbrand T, Millán JL, Le Du MH.

J Mol Biol. 2005 Jul 15;350(3):441-51.

PMID:
15946677
10.

Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.

Wang J, Stieglitz KA, Kantrowitz ER.

Biochemistry. 2005 Jun 14;44(23):8378-86.

PMID:
15938627
11.

Likelihood-enhanced fast translation functions.

McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ.

Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. Epub 2005 Mar 24.

PMID:
15805601
12.

Coot: model-building tools for molecular graphics.

Emsley P, Cowtan K.

Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. Epub 2004 Nov 26.

PMID:
15572765
13.

The CCP4 suite: programs for protein crystallography.

Collaborative Computational Project, Number 4.

Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3.

PMID:
15299374
14.

Activity-stability relationships in extremophilic enzymes.

D'Amico S, Marx JC, Gerday C, Feller G.

J Biol Chem. 2003 Mar 7;278(10):7891-6. Epub 2003 Jan 2.

15.

Altering of the metal specificity of Escherichia coli alkaline phosphatase.

Wojciechowski CL, Kantrowitz ER.

J Biol Chem. 2002 Dec 27;277(52):50476-81. Epub 2002 Oct 23.

16.

PHENIX: building new software for automated crystallographic structure determination.

Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC.

Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54. Epub 2002 Oct 21.

PMID:
12393927
17.

The 1.9 A crystal structure of heat-labile shrimp alkaline phosphatase.

de Backer M, McSweeney S, Rasmussen HB, Riise BW, Lindley P, Hough E.

J Mol Biol. 2002 May 17;318(5):1265-74.

PMID:
12083516
18.

Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.

Wojciechowski CL, Cardia JP, Kantrowitz ER.

Protein Sci. 2002 Apr;11(4):903-11.

19.

Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.

Le Du MH, Lamoure C, Muller BH, Bulgakov OV, Lajeunesse E, Ménez A, Boulain JC.

J Mol Biol. 2002 Mar 1;316(4):941-53.

PMID:
11884134
20.

Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket.

Muller BH, Lamoure C, Le Du MH, Cattolico L, Lajeunesse E, Lemaître F, Pearson A, Ducancel F, Ménez A, Boulain JC.

Chembiochem. 2001 Aug 3;2(7-8):517-23.

PMID:
11828484

Supplemental Content

Support Center