Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 58

1.

The epithelial-mesenchymal transition generates cells with properties of stem cells.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA.

Cell. 2008 May 16;133(4):704-15. doi: 10.1016/j.cell.2008.03.027.

2.

A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells.

Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T.

EMBO Rep. 2008 Jun;9(6):582-9. doi: 10.1038/embor.2008.74. Epub 2008 May 16.

3.

Notch signaling mediates hypoxia-induced tumor cell migration and invasion.

Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U.

Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6392-7. doi: 10.1073/pnas.0802047105. Epub 2008 Apr 21.

4.

The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2.

Korpal M, Lee ES, Hu G, Kang Y.

J Biol Chem. 2008 May 30;283(22):14910-4. doi: 10.1074/jbc.C800074200. Epub 2008 Apr 14.

5.

Epithelial-mesenchymal transition and the invasive potential of tumors.

Gavert N, Ben-Ze'ev A.

Trends Mol Med. 2008 May;14(5):199-209. doi: 10.1016/j.molmed.2008.03.004. Epub 2008 Apr 10.

PMID:
18406208
6.

The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2.

Park SM, Gaur AB, Lengyel E, Peter ME.

Genes Dev. 2008 Apr 1;22(7):894-907. doi: 10.1101/gad.1640608. Erratum in: Genes Dev. 2009 Jun 1;23(11):1378.

7.

The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ.

Nat Cell Biol. 2008 May;10(5):593-601. doi: 10.1038/ncb1722. Epub 2008 Mar 30.

PMID:
18376396
8.

Targeting the eukaryotic translation initiation factor 4E for cancer therapy.

Graff JR, Konicek BW, Carter JH, Marcusson EG.

Cancer Res. 2008 Feb 1;68(3):631-4. doi: 10.1158/0008-5472.CAN-07-5635. Review.

9.

Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity.

Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, Capen A, Goode RL, Dowless MS, Chen Y, Zhang H, Sissons S, Cox K, McNulty AM, Parsons SH, Wang T, Sams L, Geeganage S, Douglass LE, Neubauer BL, Dean NM, Blanchard K, Shou J, Stancato LF, Carter JH, Marcusson EG.

J Clin Invest. 2007 Sep;117(9):2638-48.

10.
11.

Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives.

Brown CJ, McNae I, Fischer PM, Walkinshaw MD.

J Mol Biol. 2007 Sep 7;372(1):7-15. Epub 2007 Jun 15. Review.

PMID:
17631896
12.

Identification and expression analysis of genes associated with bovine blastocyst formation.

Goossens K, Van Soom A, Van Poucke M, Vandaele L, Vandesompele J, Van Zeveren A, Peelman LJ.

BMC Dev Biol. 2007 Jun 8;7:64.

13.

Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?

Peinado H, Olmeda D, Cano A.

Nat Rev Cancer. 2007 Jun;7(6):415-28. Epub 2007 May 17. Review.

PMID:
17508028
14.

Weak binding affinity of human 4EHP for mRNA cap analogs.

Zuberek J, Kubacka D, Jablonowska A, Jemielity J, Stepinski J, Sonenberg N, Darzynkiewicz E.

RNA. 2007 May;13(5):691-7. Epub 2007 Mar 16.

15.

Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G.

Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, Chorev M, Halperin JA, Wagner G.

Cell. 2007 Jan 26;128(2):257-67.

16.

Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.

Chou TF, Baraniak J, Kaczmarek R, Zhou X, Cheng J, Ghosh B, Wagner CR.

Mol Pharm. 2007 Mar-Apr;4(2):208-17. Epub 2007 Jan 12.

PMID:
17217311
17.

Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT?

Radisky DC, Kenny PA, Bissell MJ.

J Cell Biochem. 2007 Jul 1;101(4):830-9. Review.

18.

The cap-dependent translation apparatus integrates and amplifies cancer pathways.

Polunovsky VA, Bitterman PB.

RNA Biol. 2006 Jan-Mar;3(1):10-7. Epub 2006 Mar 15. Review.

PMID:
17114939
19.

Complex networks orchestrate epithelial-mesenchymal transitions.

Thiery JP, Sleeman JP.

Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42. Review.

PMID:
16493418
20.

Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades.

Vasudevan S, Seli E, Steitz JA.

Genes Dev. 2006 Jan 15;20(2):138-46. No abstract available.

Supplemental Content

Support Center