Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.

Porecha RH, Stivers JT.

Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10791-6. doi: 10.1073/pnas.0801612105. Epub 2008 Jul 31.

PMID:
18669665
2.

Characterization of enzyme motions by solution NMR relaxation dispersion.

Loria JP, Berlow RB, Watt ED.

Acc Chem Res. 2008 Feb;41(2):214-21. doi: 10.1021/ar700132n. Epub 2008 Feb 19. Review.

PMID:
18281945
3.

Extrahelical damaged base recognition by DNA glycosylase enzymes.

Stivers JT.

Chemistry. 2008;14(3):786-93. Review.

PMID:
18000994
4.

Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.

Parker JB, Bianchet MA, Krosky DJ, Friedman JI, Amzel LM, Stivers JT.

Nature. 2007 Sep 27;449(7161):433-7. Epub 2007 Aug 19.

PMID:
17704764
5.

The catalytic power of uracil DNA glycosylase in the opening of thymine base pairs.

Cao C, Jiang YL, Krosky DJ, Stivers JT.

J Am Chem Soc. 2006 Oct 11;128(40):13034-5.

PMID:
17017766
6.

DNA recognition by the brinker repressor--an extreme case of coupling between binding and folding.

Cordier F, Hartmann B, Rogowski M, Affolter M, Grzesiek S.

J Mol Biol. 2006 Aug 25;361(4):659-72. Epub 2006 Jul 7.

PMID:
16876822
7.

Genomic uracil and human disease.

Hagen L, Peña-Diaz J, Kavli B, Otterlei M, Slupphaug G, Krokan HE.

Exp Cell Res. 2006 Aug 15;312(14):2666-72. Epub 2006 Jun 21. Review.

PMID:
16860315
8.

Relating protein motion to catalysis.

Hammes-Schiffer S, Benkovic SJ.

Annu Rev Biochem. 2006;75:519-41. Review.

PMID:
16756501
9.

Intrinsic dynamics of an enzyme underlies catalysis.

Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D.

Nature. 2005 Nov 3;438(7064):117-21.

PMID:
16267559
10.

The origins of high-affinity enzyme binding to an extrahelical DNA base.

Krosky DJ, Song F, Stivers JT.

Biochemistry. 2005 Apr 26;44(16):5949-59.

PMID:
15835884
11.

NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain.

Vise PD, Baral B, Latos AJ, Daughdrill GW.

Nucleic Acids Res. 2005 Apr 11;33(7):2061-77. Print 2005.

PMID:
15824059
12.

Dynamic opening of DNA during the enzymatic search for a damaged base.

Cao C, Jiang YL, Stivers JT, Song F.

Nat Struct Mol Biol. 2004 Dec;11(12):1230-6. Epub 2004 Nov 21.

PMID:
15558051
13.

NMR characterization of the dynamics of biomacromolecules.

Palmer AG 3rd.

Chem Rev. 2004 Aug;104(8):3623-40. No abstract available.

PMID:
15303831
14.

ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement.

Suhre K, Sanejouand YH.

Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W610-4.

PMID:
15215461
15.

NMR R1 rho rotating-frame relaxation with weak radio frequency fields.

Massi F, Johnson E, Wang C, Rance M, Palmer AG 3rd.

J Am Chem Soc. 2004 Feb 25;126(7):2247-56.

PMID:
14971961
16.

Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination.

Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, Yel L, Forveille M, Kavli B, Krokan HE, Ochs HD, Fischer A, Durandy A.

Nat Immunol. 2003 Oct;4(10):1023-8. Epub 2003 Sep 7.

PMID:
12958596
17.

A mechanistic perspective on the chemistry of DNA repair glycosylases.

Stivers JT, Jiang YL.

Chem Rev. 2003 Jul;103(7):2729-59. Review. No abstract available.

PMID:
12848584
18.

Evidence for flexibility in the function of ribonuclease A.

Cole R, Loria JP.

Biochemistry. 2002 May 14;41(19):6072-81.

PMID:
11994002
20.

Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules.

Palmer AG 3rd, Kroenke CD, Loria JP.

Methods Enzymol. 2001;339:204-38. Review. No abstract available.

PMID:
11462813

Supplemental Content

Support Center