Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes.

Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H.

Nat Med. 2007 Oct;13(10):1241-7. Epub 2007 Sep 30.

PMID:
17906637
2.

Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity.

Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM.

J Exp Med. 2006 Jan 23;203(1):41-6. Epub 2006 Jan 17. Erratum in: J Exp Med. 2006 Dec 25;203(13):2963.

3.

Targets for human encoded microRNAs in HIV genes.

Hariharan M, Scaria V, Pillai B, Brahmachari SK.

Biochem Biophys Res Commun. 2005 Dec 2;337(4):1214-8. Epub 2005 Oct 7.

PMID:
16236258
4.

Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B, 3F, and 3G.

Rose KM, Marin M, Kozak SL, Kabat D.

AIDS Res Hum Retroviruses. 2005 Jul;21(7):611-9.

PMID:
16060832
5.

Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif.

Doehle BP, Schäfer A, Cullen BR.

Virology. 2005 Sep 1;339(2):281-8.

6.

Macrophages archive HIV-1 virions for dissemination in trans.

Sharova N, Swingler C, Sharkey M, Stevenson M.

EMBO J. 2005 Jul 6;24(13):2481-9. Epub 2005 May 26.

7.

Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells.

Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC.

Nature. 2005 May 5;435(7038):108-14. Epub 2005 Apr 13. Retraction in: Nature. 2010 Jul 8;466(7303):276.

PMID:
15829920
8.

A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins.

Wiegand HL, Doehle BP, Bogerd HP, Cullen BR.

EMBO J. 2004 Jun 16;23(12):2451-8. Epub 2004 May 20.

9.

Neuropsychiatric impact of hepatitis C on advanced HIV.

Ryan EL, Morgello S, Isaacs K, Naseer M, Gerits P; Manhattan HIV Brain Bank.

Neurology. 2004 Mar 23;62(6):957-62.

10.

Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy.

Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM.

J Clin Virol. 2003 Feb;26(2):247-63. Review.

PMID:
12600656
11.

The role of monocytes and macrophages in the pathogenesis of HIV-1 infection.

Kedzierska K, Crowe SM.

Curr Med Chem. 2002 Nov;9(21):1893-903. Review.

PMID:
12369874
12.

HIV-1 in peripheral blood monocytes: an underrated viral source.

Zhu T.

J Antimicrob Chemother. 2002 Sep;50(3):309-11. Review. No abstract available.

PMID:
12205054
13.

HIV-1 genotypes in peripheral blood monocytes.

Zhu T.

J Leukoc Biol. 2000 Sep;68(3):338-44. Review.

PMID:
10985249
14.

HIV-1 DNA and mRNA concentrations are similar in peripheral blood monocytes and alveolar macrophages in HIV-1-infected individuals.

Lewin SR, Kirihara J, Sonza S, Irving L, Mills J, Crowe SM.

AIDS. 1998 May 7;12(7):719-27.

PMID:
9619803
15.

Chemokine receptor regulation and HIV type 1 tropism in monocyte-macrophages.

Di Marzio P, Tse J, Landau NR.

AIDS Res Hum Retroviruses. 1998 Jan 20;14(2):129-38.

PMID:
9462923
16.

CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection.

Naif HM, Li S, Alali M, Sloane A, Wu L, Kelly M, Lynch G, Lloyd A, Cunningham AL.

J Virol. 1998 Jan;72(1):830-6.

17.

Macrophages as a source of HIV during opportunistic infections.

Orenstein JM, Fox C, Wahl SM.

Science. 1997 Jun 20;276(5320):1857-61.

18.
19.

Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages.

Schrier RD, McCutchan JA, Wiley CA.

J Virol. 1993 Oct;67(10):5713-20.

20.

Genotypic and phenotypic characterization of HIV-1 patients with primary infection.

Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD.

Science. 1993 Aug 27;261(5125):1179-81.

PMID:
8356453

Supplemental Content

Support Center