Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

CRISPR provides acquired resistance against viruses in prokaryotes.

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P.

Science. 2007 Mar 23;315(5819):1709-12.

2.

PILER-CR: fast and accurate identification of CRISPR repeats.

Edgar RC.

BMC Bioinformatics. 2007 Jan 20;8:18.

3.
5.

The integrated microbial genomes (IMG) system.

Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC.

Nucleic Acids Res. 2006 Jan 1;34(Database issue):D344-8.

6.

A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.

Haft DH, Selengut J, Mongodin EF, Nelson KE.

PLoS Comput Biol. 2005 Nov;1(6):e60. Epub 2005 Nov 11.

7.

Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

Bolotin A, Quinquis B, Sorokin A, Ehrlich SD.

Microbiology. 2005 Aug;151(Pt 8):2551-61.

PMID:
16079334
8.

PILER: identification and classification of genomic repeats.

Edgar RC, Myers EW.

Bioinformatics. 2005 Jun;21 Suppl 1:i152-8.

PMID:
15961452
9.

Why repetitive DNA is essential to genome function.

Shapiro JA, von Sternberg R.

Biol Rev Camb Philos Soc. 2005 May;80(2):227-50. Review.

PMID:
15921050
10.

Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.

Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E.

J Mol Evol. 2005 Feb;60(2):174-82.

PMID:
15791728
11.
12.

Genome update: DNA repeats in bacterial genomes.

Ussery DW, Binnewies TT, Gouveia-Oliveira R, Jarmer H, Hallin PF.

Microbiology. 2004 Nov;150(Pt 11):3519-21. No abstract available.

PMID:
15528640
13.

Associations between inverted repeats and the structural evolution of bacterial genomes.

Achaz G, Coissac E, Netter P, Rocha EP.

Genetics. 2003 Aug;164(4):1279-89.

14.

Identification of genes that are associated with DNA repeats in prokaryotes.

Jansen R, Embden JD, Gaastra W, Schouls LM.

Mol Microbiol. 2002 Mar;43(6):1565-75.

15.

REPuter: the manifold applications of repeat analysis on a genomic scale.

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R.

Nucleic Acids Res. 2001 Nov 15;29(22):4633-42.

16.

Short sequence repeats in microbial pathogenesis and evolution.

van Belkum A.

Cell Mol Life Sci. 1999 Nov 30;56(9-10):729-34. Review.

PMID:
11212332
17.

Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria.

Mojica FJ, Díez-Villaseñor C, Soria E, Juez G.

Mol Microbiol. 2000 Apr;36(1):244-6. No abstract available.

18.

Functional and evolutionary roles of long repeats in prokaryotes.

Rocha EP, Danchin A, Viari A.

Res Microbiol. 1999 Nov-Dec;150(9-10):725-33. Review.

PMID:
10673010
19.

Short-sequence DNA repeats in prokaryotic genomes.

van Belkum A, Scherer S, van Alphen L, Verbrugh H.

Microbiol Mol Biol Rev. 1998 Jun;62(2):275-93. Review.

20.

Searching for patterns in genomic data.

Dsouza M, Larsen N, Overbeek R.

Trends Genet. 1997 Dec;13(12):497-8. No abstract available.

PMID:
9433140

Supplemental Content

Support Center