Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase.

Shimogawa MM, Graczyk B, Gardner MK, Francis SE, White EA, Ess M, Molk JN, Ruse C, Niessen S, Yates JR 3rd, Muller EG, Bloom K, Odde DJ, Davis TN.

Curr Biol. 2006 Aug 8;16(15):1489-501.

2.

Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis.

Civelekoglu-Scholey G, Sharp DJ, Mogilner A, Scholey JM.

Biophys J. 2006 Jun 1;90(11):3966-82. Epub 2006 Mar 13.

3.

Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy.

Dorn JF, Jaqaman K, Rines DR, Jelson GS, Sorger PK, Danuser G.

Biophys J. 2005 Oct;89(4):2835-54.

4.

The spindle checkpoint: tension versus attachment.

Pinsky BA, Biggins S.

Trends Cell Biol. 2005 Sep;15(9):486-93. Review.

PMID:
16084093
5.

Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.

Gardner MK, Pearson CG, Sprague BL, Zarzar TR, Bloom K, Salmon ED, Odde DJ.

Mol Biol Cell. 2005 Aug;16(8):3764-75. Epub 2005 Jun 1.

6.

Mechanism and function of poleward flux in Xenopus extract meiotic spindles.

Mitchison TJ.

Philos Trans R Soc Lond B Biol Sci. 2005 Mar 29;360(1455):623-9. Review.

7.

Molecular mechanisms of kinetochore capture by spindle microtubules.

Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C, Tanaka TU.

Nature. 2005 Apr 21;434(7036):987-94.

8.

Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase.

Pearson CG, Yeh E, Gardner M, Odde D, Salmon ED, Bloom K.

Curr Biol. 2004 Nov 9;14(21):1962-7.

9.

Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.

Pearson CG, Maddox PS, Zarzar TR, Salmon ED, Bloom K.

Mol Biol Cell. 2003 Oct;14(10):4181-95. Epub 2003 Jul 25.

10.

Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics.

Maddox P, Straight A, Coughlin P, Mitchison TJ, Salmon ED.

J Cell Biol. 2003 Aug 4;162(3):377-82.

11.

Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle.

Sprague BL, Pearson CG, Maddox PS, Bloom KS, Salmon ED, Odde DJ.

Biophys J. 2003 Jun;84(6):3529-46.

12.

beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast.

Gupta ML Jr, Bode CJ, Thrower DA, Pearson CG, Suprenant KA, Bloom KS, Himes RH.

Mol Biol Cell. 2002 Aug;13(8):2919-32.

13.

Searching for the middle ground: mechanisms of chromosome alignment during mitosis.

Kapoor TM, Compton DA.

J Cell Biol. 2002 May 13;157(4):551-6. Epub 2002 May 13. Review.

14.

Budding yeast chromosome structure and dynamics during mitosis.

Pearson CG, Maddox PS, Salmon ED, Bloom K.

J Cell Biol. 2001 Mar 19;152(6):1255-66.

15.

The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain.

Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M.

Mol Cell Biol. 2000 Sep;20(18):7037-48.

16.

Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation.

Tanaka T, Fuchs J, Loidl J, Nasmyth K.

Nat Cell Biol. 2000 Aug;2(8):492-9.

PMID:
10934469
17.
19.
20.

Supplemental Content

Support Center