Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

ATP hydrolysis is required for cohesin's association with chromosomes.

Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K.

Curr Biol. 2003 Nov 11;13(22):1941-53.

2.

A model for ATP hydrolysis-dependent binding of cohesin to DNA.

Weitzer S, Lehane C, Uhlmann F.

Curr Biol. 2003 Nov 11;13(22):1930-40.

3.

S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex.

Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K.

Nature. 2003 Aug 28;424(6952):1078-83.

PMID:
12944972
4.

Chromosome cohesion and separation: from men and molecules.

Uhlmann F.

Curr Biol. 2003 Feb 4;13(3):R104-14. Review.

5.

Structure, function and DNA composition of Saccharomyces cerevisiae chromatin loops.

Filipski J, Mucha M.

Gene. 2002 Oct 30;300(1-2):63-8.

PMID:
12468087
6.

A chromatin remodelling complex that loads cohesin onto human chromosomes.

Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R.

Nature. 2002 Aug 29;418(6901):994-8.

PMID:
12198550
7.

Molecular architecture of SMC proteins and the yeast cohesin complex.

Haering CH, Löwe J, Hochwagen A, Nasmyth K.

Mol Cell. 2002 Apr;9(4):773-88.

8.

Requirement of chromatid cohesion proteins rad21/scc1 and mis4/scc2 for normal spindle-kinetochore interaction in fission yeast.

Toyoda Y, Furuya K, Goshima G, Nagao K, Takahashi K, Yanagida M.

Curr Biol. 2002 Mar 5;12(5):347-58.

9.

Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers.

Reid RJ, Sunjevaric I, Keddache M, Rothstein R.

Yeast. 2002 Mar 15;19(4):319-28. Erratum in: Yeast 2002 Jun 30;19(9):803. Kedacche Mehdi [corrected to Keddache Mehdi].

10.

Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast.

Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SI, Watanabe Y.

Nat Cell Biol. 2002 Jan;4(1):89-93.

PMID:
11780129
11.

Requirement of heterochromatin for cohesion at centromeres.

Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC.

Science. 2001 Dec 21;294(5551):2539-42. Epub 2001 Oct 11.

12.
13.

Genomic expression programs in the response of yeast cells to environmental changes.

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO.

Mol Biol Cell. 2000 Dec;11(12):4241-57.

14.

Chromosomal addresses of the cohesin component Mcd1p.

Laloraya S, Guacci V, Koshland D.

J Cell Biol. 2000 Nov 27;151(5):1047-56.

15.
16.

Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase.

Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A, Morishita J, Yuasa T, Sutani T, Kearsey SE, Uhlmann F, Nasmyth K, Yanagida M.

Genes Dev. 2000 Nov 1;14(21):2757-70.

17.

A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression.

Cohen BA, Mitra RD, Hughes JD, Church GM.

Nat Genet. 2000 Oct;26(2):183-6.

PMID:
11017073
18.

Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation.

Tanaka T, Fuchs J, Loidl J, Nasmyth K.

Nat Cell Biol. 2000 Aug;2(8):492-9.

PMID:
10934469
19.

Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins.

Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K.

Mol Cell. 2000 Feb;5(2):243-54.

20.

Identification of cohesin association sites at centromeres and along chromosome arms.

Tanaka T, Cosma MP, Wirth K, Nasmyth K.

Cell. 1999 Sep 17;98(6):847-58.

Supplemental Content

Support Center