Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

PUROMYCIN INHIBITION OF PROTEIN SYNTHESIS: INCORPORATION OF PUROMYCIN INTO PEPTIDE CHAINS.

NATHANS D.

Proc Natl Acad Sci U S A. 1964 Apr;51:585-92. No abstract available.

2.

Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria.

Schl├╝nzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F.

Nature. 2001 Oct 25;413(6858):814-21.

PMID:
11677599
3.

Oxazolidinones mechanism of action: inhibition of the first peptide bond formation.

Patel U, Yan YP, Hobbs FW Jr, Kaczmarczyk J, Slee AM, Pompliano DL, Kurilla MG, Bobkova EV.

J Biol Chem. 2001 Oct 5;276(40):37199-205. Epub 2001 Aug 1.

4.

Crystal structure of the ribosome at 5.5 A resolution.

Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF.

Science. 2001 May 4;292(5518):883-96. Epub 2001 Mar 29.

5.

The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.

Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V.

Cell. 2000 Dec 22;103(7):1143-54.

6.

Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action.

Xiong L, Kloss P, Douthwaite S, Andersen NM, Swaney S, Shinabarger DL, Mankin AS.

J Bacteriol. 2000 Oct;182(19):5325-31.

7.

The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.

Ban N, Nissen P, Hansen J, Moore PB, Steitz TA.

Science. 2000 Aug 11;289(5481):905-20.

8.

Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors.

Matassova NB, Rodnina MV, Endermann R, Kroll HP, Pleiss U, Wild H, Wintermeyer W.

RNA. 1999 Jul;5(7):939-46.

9.

The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria.

Swaney SM, Aoki H, Ganoza MC, Shinabarger DL.

Antimicrob Agents Chemother. 1998 Dec;42(12):3251-5.

10.

Synthesis and antimicrobial evaluation of TAN-1057A/B analogs.

Williams RM, Yuan C, Lee VJ, Chamberland S.

J Antibiot (Tokyo). 1998 Feb;51(2):189-201.

12.

Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions.

Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF, Buysse JM.

Antimicrob Agents Chemother. 1997 Oct;41(10):2132-6.

13.

Throwing a spanner in the works: antibiotics and the translation apparatus.

Spahn CM, Prescott CD.

J Mol Med (Berl). 1996 Aug;74(8):423-39. Review.

PMID:
8872856
14.
15.

Eukaryotic protein synthesis: an in vitro analysis.

Merrick WC.

Biochimie. 1994;76(9):822-30. Review.

PMID:
7880898
16.

Three tRNA binding sites on Escherichia coli ribosomes.

Rheinberger HJ, Sternbach H, Nierhaus KH.

Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310-4.

17.

Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site.

Geigenm├╝ller U, Nierhaus KH.

Eur J Biochem. 1986 Dec 15;161(3):723-6.

18.

Peptide transport in bacteria.

Higgins CF, Gibson MM.

Methods Enzymol. 1986;125:365-77. No abstract available.

PMID:
3520226
19.

Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites.

Moazed D, Noller HF.

Cell. 1989 May 19;57(4):585-97.

PMID:
2470511
20.

Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis.

Eustice DC, Feldman PA, Zajac I, Slee AM.

Antimicrob Agents Chemother. 1988 Aug;32(8):1218-22.

Supplemental Content

Support Center