Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 17

1.

Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9.

Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED.

Nature. 2002 Mar 7;416(6876):103-7. Epub 2002 Feb 20.

PMID:
11882902
2.

Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA.

Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V.

J Mol Biol. 2002 Feb 22;316(3):725-68.

PMID:
11866529
3.

Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component.

Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G.

Nat Genet. 2002 Mar;30(3):329-34. Epub 2002 Feb 19.

PMID:
11850619
4.

Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.

Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T.

Cell. 2001 Nov 2;107(3):323-37.

5.

Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3.

Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S.

EMBO J. 2001 Sep 17;20(18):5232-41.

6.

Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins.

Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R.

Mol Cell. 2001 Apr;7(4):729-39.

7.

Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T.

Nature. 2001 Mar 1;410(6824):120-4.

PMID:
11242054
8.

Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.

Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T.

Nature. 2001 Mar 1;410(6824):116-20.

PMID:
11242053
9.

Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases.

Taddei A, Maison C, Roche D, Almouzni G.

Nat Cell Biol. 2001 Feb;3(2):114-20.

PMID:
11175742
10.

HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes.

Minc E, Courvalin JC, Buendia B.

Cytogenet Cell Genet. 2000;90(3-4):279-84.

PMID:
11124534
11.

Characterisation of transcriptionally active and inactive chromatin domains in neurons.

Akhmanova A, Verkerk T, Langeveld A, Grosveld F, Galjart N.

J Cell Sci. 2000 Dec;113 Pt 24:4463-74.

12.

Chromodomains are protein-RNA interaction modules.

Akhtar A, Zink D, Becker PB.

Nature. 2000 Sep 21;407(6802):405-9.

PMID:
11014199
13.

Heterochromatin protein 1 binds to nucleosomes and DNA in vitro.

Zhao T, Heyduk T, Allis CD, Eissenberg JC.

J Biol Chem. 2000 Sep 8;275(36):28332-8.

14.

The HP1 protein family: getting a grip on chromatin.

Eissenberg JC, Elgin SC.

Curr Opin Genet Dev. 2000 Apr;10(2):204-10. Review.

PMID:
10753776
15.

RNA recognition by arginine-rich peptide motifs.

Weiss MA, Narayana N.

Biopolymers. 1998;48(2-3):167-80. Review.

PMID:
10333744
16.

Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment.

Seeler JS, Marchio A, Sitterlin D, Transy C, Dejean A.

Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7316-21.

Supplemental Content

Support Center