Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers.

Hénon S, Lenormand G, Richert A, Gallet F.

Biophys J. 1999 Feb;76(2):1145-51.

2.

Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton.

Lenormand G, Hénon S, Richert A, Siméon J, Gallet F.

Biophys J. 2001 Jul;81(1):43-56.

3.
4.

Nanomechanical characterization of red blood cells using optical tweezers.

Li C, Liu KK.

J Mater Sci Mater Med. 2008 Apr;19(4):1529-35. doi: 10.1007/s10856-008-3382-9. Epub 2008 Jan 24.

PMID:
18214643
5.

Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.

Li J, Dao M, Lim CT, Suresh S.

Biophys J. 2005 May;88(5):3707-19. Epub 2005 Mar 4.

6.

Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.

Li C, Liu YP, Liu KK, Lai AK.

IEEE Trans Nanobioscience. 2008 Mar;7(1):80-90. doi: 10.1109/TNB.2008.2000152.

PMID:
18334458
7.
8.

Dielectro-deformations of erythrocyte: analysis of the ellipsoidal shear model.

Kononenko VL, Ilyina TA.

Membr Cell Biol. 2001;14(4):537-51.

PMID:
11497108
9.

Cell deformation cytometry using diode-bar optical stretchers.

Sraj I, Eggleton CD, Jimenez R, Hoover E, Squier J, Chichester J, Marr DW.

J Biomed Opt. 2010 Jul-Aug;15(4):047010. doi: 10.1117/1.3470124.

10.

Dynamic deformation of red blood cell in dual-trap optical tweezers.

Rancourt-Grenier S, Wei MT, Bai JJ, Chiou A, Bareil PP, Duval PL, Sheng Y.

Opt Express. 2010 May 10;18(10):10462-72. doi: 10.1364/OE.18.010462.

PMID:
20588900
11.

Reaction of colloidal silica with membranes of intact mammalian cells.

Cantrell AC, Ellis P.

Chem Biol Interact. 1983 Apr-May;44(1-2):169-83.

PMID:
6303610
12.

Axisymmetric optical-trap measurement of red blood cell membrane elasticity.

Lewalle A, Parker KH.

J Biomech Eng. 2011 Jan;133(1):011007. doi: 10.1115/1.4003127.

PMID:
21186897
13.

Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.

Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E.

Biophys J. 1998 Oct;75(4):2038-49.

14.

Model system to study the influence of aggregation on the hemolytic potential of silica nanoparticles.

Thomassen LC, Rabolli V, Masschaele K, Alberto G, Tomatis M, Ghiazza M, Turci F, Breynaert E, Martra G, Kirschhock CE, Martens JA, Lison D, Fubini B.

Chem Res Toxicol. 2011 Nov 21;24(11):1869-75. doi: 10.1021/tx2002178. Epub 2011 Oct 11.

PMID:
21928780
15.

Mechanical properties of the human red blood cell membrane at -15 degrees C.

Thom F.

Cryobiology. 2009 Aug;59(1):24-7. doi: 10.1016/j.cryobiol.2009.04.001. Epub 2009 Apr 9.

PMID:
19362084
16.

The deformation of an erythrocyte under the radiation pressure by optical stretch.

Liu YP, Li C, Liu KK, Lai AC.

J Biomech Eng. 2006 Dec;128(6):830-6.

PMID:
17154682
17.

Effects of two low-osmolar contrast media, ioxaglate and iopamidol, on erythrocyte membrane elasticity.

Bucherer C, Lacombe C, Lelievre JC.

Invest Radiol. 1994 Dec;29(12):1026-30.

PMID:
7721543
18.

Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.

Drochon A, Barthes-Biesel D, Lacombe C, Lelievre JC.

J Biomech Eng. 1990 Aug;112(3):241-9. Erratum in: J Biomech Eng 1991 Feb;113(1):103.

PMID:
2120513

Supplemental Content

Support Center