Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 319

1.

The crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis.

Modis Y, Filppula SA, Novikov DK, Norledge B, Hiltunen JK, Wierenga RK.

Structure. 1998 Aug 15;6(8):957-70.

2.

Peroxisomal degradation of trans-unsaturated fatty acids in the yeast Saccharomyces cerevisiae.

Gurvitz A, Hamilton B, Ruis H, Hartig A.

J Biol Chem. 2001 Jan 12;276(2):895-903.

3.

Delta 3,5,delta 2,4-dienoyl-CoA isomerase is a multifunctional isomerase. A structural and mechanistic study.

Zhang D, Liang X, He XY, Alipui OD, Yang SY, Schulz H.

J Biol Chem. 2001 Apr 27;276(17):13622-7. Epub 2001 Jan 17.

4.

The isomerase and hydratase reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from structures of complexes with 3S-hydroxy-acyl-CoA.

Kasaragod P, Schmitz W, Hiltunen JK, Wierenga RK.

FEBS J. 2013 Jul;280(13):3160-75. doi: 10.1111/febs.12150. Epub 2013 Feb 15.

5.

NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.

Smeland TE, Nada M, Cuebas D, Schulz H.

Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673-7.

7.

The crystal structure of delta(3)-delta(2)-enoyl-CoA isomerase.

Mursula AM, van Aalten DM, Hiltunen JK, Wierenga RK.

J Mol Biol. 2001 Jun 15;309(4):845-53.

PMID:
11399063
8.

Peroxisomes and beta-oxidation of long-chain unsaturated carboxylic acids.

Hiltunen JK.

Scand J Clin Lab Invest Suppl. 1991;204:33-46. Review.

PMID:
2042025
9.
11.

The 1.3 A crystal structure of human mitochondrial Delta3-Delta2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group.

Partanen ST, Novikov DK, Popov AN, Mursula AM, Hiltunen JK, Wierenga RK.

J Mol Biol. 2004 Sep 24;342(4):1197-208.

PMID:
15351645
12.
14.

Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.

Forouhar F, Hussain M, Farid R, Benach J, Abashidze M, Edstrom WC, Vorobiev SM, Xiao R, Acton TB, Fu Z, Kim JJ, Miziorko HM, Montelione GT, Hunt JF.

J Biol Chem. 2006 Mar 17;281(11):7533-45. Epub 2005 Dec 5.

15.

Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.

Xiang H, Luo L, Taylor KL, Dunaway-Mariano D.

Biochemistry. 1999 Jun 15;38(24):7638-52.

PMID:
10387003
16.

Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties.

Chen ZJ, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM.

J Mol Biol. 2008 Jun 13;379(4):830-44. doi: 10.1016/j.jmb.2008.04.041. Epub 2008 Apr 24.

PMID:
18479707
17.

Human Δ³,Δ²-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10.

Onwukwe GU, Kursula P, Koski MK, Schmitz W, Wierenga RK.

FEBS J. 2015 Feb;282(4):746-68. doi: 10.1111/febs.13179. Epub 2015 Jan 14.

18.

Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function.

Haapalainen AM, Meriläinen G, Pirilä PL, Kondo N, Fukao T, Wierenga RK.

Biochemistry. 2007 Apr 10;46(14):4305-21. Epub 2007 Mar 20.

PMID:
17371050
19.

Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.

Modis Y, Wierenga RK.

J Mol Biol. 2000 Apr 14;297(5):1171-82.

PMID:
10764581
20.

A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2.

Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T.

J Biol Chem. 2004 Jun 4;279(23):24666-72. Epub 2004 Mar 29.

Supplemental Content

Support Center