Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 336

1.
3.

Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A.

Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA.

Cell. 1998 May 15;93(4):617-25.

4.

Crystal structure of Saccharomyces cerevisiae Ygr203w, a homolog of single-domain rhodanese and Cdc25 phosphatase catalytic domain.

Yeo HK, Lee JY.

Proteins. 2009 Aug 1;76(2):520-4. doi: 10.1002/prot.22420. No abstract available.

PMID:
19382206
6.

Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.

Spallarossa A, Donahue JL, Larson TJ, Bolognesi M, Bordo D.

Structure. 2001 Nov;9(11):1117-25.

7.

Structural characterization of the As/Sb reductase LmACR2 from Leishmania major.

Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, Bordo D.

J Mol Biol. 2009 Mar 13;386(5):1229-39. doi: 10.1016/j.jmb.2008.07.056. Epub 2008 Jul 29.

PMID:
18687336
8.
9.

Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1.

Slack DN, Seternes OM, Gabrielsen M, Keyse SM.

J Biol Chem. 2001 May 11;276(19):16491-500. Epub 2001 Jan 30.

10.

Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.

Deshimaru S, Miyake Y, Ohmiya T, Tatsu Y, Endo Y, Yumoto N, Toraya T.

J Biochem. 2002 May;131(5):705-12.

11.

Structure and function of the protein tyrosine phosphatases.

Fauman EB, Saper MA.

Trends Biochem Sci. 1996 Nov;21(11):413-7. Review.

PMID:
8987394
12.

Two CDC25 homologues are differentially expressed during mouse development.

Wickramasinghe D, Becker S, Ernst MK, Resnick JL, Centanni JM, Tessarollo L, Grabel LB, Donovan PJ.

Development. 1995 Jul;121(7):2047-56.

13.

Kinetic analysis of the catalytic domain of human cdc25B.

Gottlin EB, Xu X, Epstein DM, Burke SP, Eckstein JW, Ballou DP, Dixon JE.

J Biol Chem. 1996 Nov 1;271(44):27445-9.

14.

Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3.

Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S.

J Biol Chem. 2000 Aug 11;275(32):24613-21.

15.

Protein tyrosine phosphatases: mechanisms of catalysis and regulation.

Denu JM, Dixon JE.

Curr Opin Chem Biol. 1998 Oct;2(5):633-41. Review.

PMID:
9818190
16.

Dual-specific Cdc25B phosphatase: in search of the catalytic acid.

Chen W, Wilborn M, Rudolph J.

Biochemistry. 2000 Sep 5;39(35):10781-9.

PMID:
10978163
17.

Catalytic mechanism of Cdc25.

Rudolph J.

Biochemistry. 2002 Dec 10;41(49):14613-23.

PMID:
12463761
18.
19.

Low molecular weight protein-tyrosine phosphatases are highly conserved between fission yeast and man.

Mondesert O, Moreno S, Russell P.

J Biol Chem. 1994 Nov 11;269(45):27996-9.

20.

The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.

Wilborn M, Free S, Ban A, Rudolph J.

Biochemistry. 2001 Nov 27;40(47):14200-6.

PMID:
11714273

Supplemental Content

Support Center