Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

A comparative conformational analysis of thimet oligopeptidase (EC 3.4.24.15) substrates.

Jacchieri SG, Gomes MD, Juliano L, Camargo AC.

J Pept Res. 1998 Jun;51(6):452-9.

PMID:
9650720
2.

Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin.

Oliveira V, Campos M, Melo RL, Ferro ES, Camargo AC, Juliano MA, Juliano L.

Biochemistry. 2001 Apr 10;40(14):4417-25.

PMID:
11284698
3.

Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase.

Lim EJ, Sampath S, Coll-Rodriguez J, Schmidt J, Ray K, Rodgers DW.

J Biol Chem. 2007 Mar 30;282(13):9722-32. Epub 2007 Jan 24.

4.

The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding.

Machado MF, Rioli V, Dalio FM, Castro LM, Juliano MA, Tersariol IL, Ferro ES, Juliano L, Oliveira V.

Biochem J. 2007 Jun 1;404(2):279-88.

5.

Catalytic properties of thimet oligopeptidase H600A mutant.

Machado MF, Marcondes MF, Rioli V, Ferro ES, Juliano MA, Juliano L, Oliveira V.

Biochem Biophys Res Commun. 2010 Apr 2;394(2):429-33. doi: 10.1016/j.bbrc.2010.03.045. Epub 2010 Mar 10.

PMID:
20226173
6.
7.

Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization.

Ray K, Hines CS, Coll-Rodriguez J, Rodgers DW.

J Biol Chem. 2004 May 7;279(19):20480-9. Epub 2004 Mar 3.

9.

Human thimet oligopeptidase.

Dando PM, Brown MA, Barrett AJ.

Biochem J. 1993 Sep 1;294 ( Pt 2):451-7.

10.

[A turning point in the knowledge of the structure-function-activity relations of elastin].

Alix AJ.

J Soc Biol. 2001;195(2):181-93. Review. French.

PMID:
11727705
11.
12.

A structure-based site-directed mutagenesis study on the neurolysin (EC 3.4.24.16) and thimet oligopeptidase (EC 3.4.24.15) catalysis.

Oliveira V, Araújo MC, Rioli V, de Camargo AC, Tersariol IL, Juliano MA, Juliano L, Ferro ES.

FEBS Lett. 2003 Apr 24;541(1-3):89-92.

13.

Characterization of thimet- and neurolysin-like activities in Escherichia coli M 3 A peptidases and description of a specific substrate.

Paschoalin T, Carmona AK, Oliveira V, Juliano L, Travassos LR.

Arch Biochem Biophys. 2005 Sep 1;441(1):25-34.

PMID:
16098472
14.

Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases.

Saric T, Graef CI, Goldberg AL.

J Biol Chem. 2004 Nov 5;279(45):46723-32. Epub 2004 Aug 24.

15.

Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase.

Saric T, Beninga J, Graef CI, Akopian TN, Rock KL, Goldberg AL.

J Biol Chem. 2001 Sep 28;276(39):36474-81. Epub 2001 Jul 30.

16.

Role of amino acid residues at turns in the conformational stability and folding of human lysozyme.

Takano K, Yamagata Y, Yutani K.

Biochemistry. 2000 Jul 25;39(29):8655-65.

PMID:
10913274
17.

pH dependence studies provide insight into the structure and mechanism of thimet oligopeptidase (EC 3.4.24.15).

Sigman JA, Edwards SR, Pabon A, Glucksman MJ, Wolfson AJ.

FEBS Lett. 2003 Jun 19;545(2-3):224-8.

19.

Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences.

Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, Otwinowski Z, Ito A, Deisenhofer J.

Structure. 2001 Jul 3;9(7):615-25.

20.

Structural basis for allosteric substrate specificity regulation in anaerobic ribonucleotide reductases.

Larsson KM, Andersson J, Sjöberg BM, Nordlund P, Logan DT.

Structure. 2001 Aug;9(8):739-50.

Supplemental Content

Support Center