Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin.

Brunn GJ, Hudson CC, Sekulić A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT.

Science. 1997 Jul 4;277(5322):99-101.

2.
3.

Attenuation of mammalian target of rapamycin activity by increased cAMP in 3T3-L1 adipocytes.

Scott PH, Lawrence JC Jr.

J Biol Chem. 1998 Dec 18;273(51):34496-501.

4.

PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation.

Lawrence JC Jr, Fadden P, Haystead TA, Lin TA.

Adv Enzyme Regul. 1997;37:239-67. Review.

PMID:
9381973
5.

Phosphorylation of the eIF4E-binding protein PHAS-I after exposure of PC12 cells to EGF and NGF.

Kleijn M, Korthout MM, Voorma HO, Thomas AA.

FEBS Lett. 1996 Nov 4;396(2-3):165-71.

6.

Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes.

Pham PT, Heydrick SJ, Fox HL, Kimball SR, Jefferson LS Jr, Lynch CJ.

J Cell Biochem. 2000 Sep 7;79(3):427-41.

PMID:
10972980
8.
9.
10.

Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies.

Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC Jr.

J Biol Chem. 2000 Oct 27;275(43):33836-43.

11.

Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation.

Xu G, Marshall CA, Lin TA, Kwon G, Munivenkatappa RB, Hill JR, Lawrence JC Jr, McDaniel ML.

J Biol Chem. 1998 Feb 20;273(8):4485-91.

12.

Regulation of eIF-4E BP1 phosphorylation by mTOR.

Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J.

J Biol Chem. 1997 Oct 17;272(42):26457-63.

13.

Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.

Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT.

J Biol Chem. 1995 Jan 13;270(2):815-22.

14.

Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism.

Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J.

J Biol Chem. 1998 Jun 5;273(23):14484-94. Erratum in: J Biol Chem 1998 Aug 21;273(34):22160.

15.
16.
17.

Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002.

Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT.

EMBO J. 1996 Oct 1;15(19):5256-67.

18.

A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells.

Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT.

Cancer Res. 2000 Jul 1;60(13):3504-13.

19.

4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway.

Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N.

Genes Dev. 1998 Feb 15;12(4):502-13.

20.

The rapamycin-sensitive signal transduction pathway as a target for cancer therapy.

Hidalgo M, Rowinsky EK.

Oncogene. 2000 Dec 27;19(56):6680-6. Review.

Supplemental Content

Support Center