Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.
2.
3.

Development of electroretinogram and rod phototransduction response in human infants.

Breton ME, Quinn GE, Schueller AW.

Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1588-602.

PMID:
7601640
5.

Rod transduction parameters from the a wave of local receptor populations.

Nusinowitz S, Hood DC, Birch DG.

J Opt Soc Am A Opt Image Sci Vis. 1995 Oct;12(10):2259-66.

PMID:
7500207
6.

Phototransduction in human cones measured using the alpha-wave of the ERG.

Hood DC, Birch DG.

Vision Res. 1995 Oct;35(20):2801-10.

7.

Rodent electroretinography: methods for extraction and interpretation of rod and cone responses.

Weymouth AE, Vingrys AJ.

Prog Retin Eye Res. 2008 Jan;27(1):1-44. Epub 2007 Oct 7. Review.

PMID:
18042420
8.

Sites of disease action in a retinal dystrophy with supernormal and delayed rod electroretinogram b-waves.

Hood DC, Cideciyan AV, Halevy DA, Jacobson SG.

Vision Res. 1996 Mar;36(6):889-901.

9.
10.

Rod and cone contributions to the a-wave of the electroretinogram of the macaque.

Robson JG, Saszik SM, Ahmed J, Frishman LJ.

J Physiol. 2003 Mar 1;547(Pt 2):509-30. Epub 2003 Jan 24.

11.
12.

A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.

Verdon WA, Schneck ME, Haegerstrom-Portnoy G.

Vision Res. 2003 Sep;43(19):2089-99.

13.

Cone and rod ERG phototransduction parameters in retinitis pigmentosa.

Tzekov RT, Locke KG, Hood DC, Birch DG.

Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3993-4000.

PMID:
12939320
14.

Rod and cone a-waves in three cases of Bietti crystalline chorioretinal dystrophy.

Usui T, Tanimoto N, Takagi M, Hasegawa S, Abe H.

Am J Ophthalmol. 2001 Sep;132(3):395-402.

PMID:
11530054
15.

Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram.

Jackson GR, McGwin G Jr, Phillips JM, Klein R, Owsley C.

Invest Ophthalmol Vis Sci. 2004 Sep;45(9):3271-8.

PMID:
15326151
16.

Effect of age on short-wavelength sensitive cone electroretinogram and long- and middle-wavelength sensitive cone electroretinogram.

Suzuki S, Horiguchi M, Tanikawa A, Miyake Y, Kondo M.

Jpn J Ophthalmol. 1998 Sep-Oct;42(5):424-30.

PMID:
9822976
17.

Evaluation of the rhodopsin knockout mouse as a model of pure cone function.

Jaissle GB, May CA, Reinhard J, Kohler K, Fauser S, Lütjen-Drecoll E, Zrenner E, Seeliger MW.

Invest Ophthalmol Vis Sci. 2001 Feb;42(2):506-13.

PMID:
11157890
18.

Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.

Popova E, Kupenova P.

Vision Res. 2009 Jul;49(15):2001-10. doi: 10.1016/j.visres.2009.05.010. Epub 2009 May 20.

19.

The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation.

Chiti Z, North RV, Mortlock KE, Drasdo N.

Ophthalmic Physiol Opt. 2003 Jul;23(4):370-6.

PMID:
12828627
20.

Supplemental Content

Support Center