Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 335

1.
2.

p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats.

Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q 4th, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK.

Circ Res. 1997 Jan;80(1):45-51.

3.

Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit.

Li JM, Shah AM.

J Biol Chem. 2003 Apr 4;278(14):12094-100. Epub 2003 Jan 30.

4.

Arachidonic acid metabolites mediate angiotensin II-induced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells.

Zafari AM, Ushio-Fukai M, Minieri CA, Akers M, Lassègue B, Griendling KK.

Antioxid Redox Signal. 1999 Summer;1(2):167-79.

PMID:
11228745
5.

Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats.

Zalba G, San José G, Beaumont FJ, Fortuño MA, Fortuño A, Díez J.

Circ Res. 2001 Feb 2;88(2):217-22.

6.

Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle.

Weber DS, Rocic P, Mellis AM, Laude K, Lyle AN, Harrison DG, Griendling KK.

Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H37-42. Epub 2004 Sep 2.

PMID:
15345488
7.

Synergistic effect of mechanical stretch and angiotensin II on superoxide production via NADPH oxidase in vascular smooth muscle cells.

Hitomi H, Fukui T, Moriwaki K, Matsubara K, Sun GP, Rahman M, Nishiyama A, Kiyomoto H, Kimura S, Ohmori K, Abe Y, Kohno M.

J Hypertens. 2006 Jun;24(6):1089-95.

PMID:
16685209
8.

Role of the vascular NADH/NADPH oxidase system in atherosclerosis.

Yokoyama M, Inoue N, Kawashima S.

Ann N Y Acad Sci. 2000 May;902:241-7; discussion 247-8. Review.

PMID:
10865844
9.

Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy.

Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK.

Hypertension. 1998 Sep;32(3):488-95.

10.
11.

p22phox-derived superoxide mediates enhanced proliferative capacity of diabetic vascular smooth muscle cells.

Jeong HY, Jeong HY, Kim CD.

Diabetes Res Clin Pract. 2004 Apr;64(1):1-10.

PMID:
15036821
13.
14.

Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions.

Kalinina N, Agrotis A, Tararak E, Antropova Y, Kanellakis P, Ilyinskaya O, Quinn MT, Smirnov V, Bobik A.

Arterioscler Thromb Vasc Biol. 2002 Dec 1;22(12):2037-43.

15.
16.
17.

Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species.

Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kübler W, Kreuzer J.

Arterioscler Thromb Vasc Biol. 2000 Apr;20(4):940-8.

18.

NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle.

Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, Chitano P, Hoidal JR.

Am J Physiol Lung Cell Mol Physiol. 2002 Apr;282(4):L782-95.

PMID:
11880305
19.

Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase.

Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K.

J Biol Chem. 1996 Sep 6;271(36):22152-8.

20.

Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle.

De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK.

Biochem J. 1998 Feb 1;329 ( Pt 3):653-7.

Supplemental Content

Support Center