Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 216

1.

Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.

Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD.

Cell. 1996 Mar 22;84(6):843-51.

2.

Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines.

Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD.

Nature. 1996 Sep 19;383(6597):269-72.

PMID:
8805705
3.

Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation.

Bhat RA, Riehl M, Santandrea G, Velasco R, Slocombe S, Donn G, Steinbiss HH, Thompson RD, Becker HA.

Plant J. 2003 Feb;33(3):455-69. Erratum in: Plant J. 2003 Aug;35(4):556.

4.

Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex.

Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL.

Genes Dev. 1997 Jul 1;11(13):1640-50.

5.

Identification and analysis of yeast nucleosomal histone acetyltransferase complexes.

Eberharter A, John S, Grant PA, Utley RT, Workman JL.

Methods. 1998 Aug;15(4):315-21.

PMID:
9740719
6.

Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator.

Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM.

J Biol Chem. 1999 Jun 25;274(26):18157-60.

7.

Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.

Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA.

Nature. 2005 Jan 27;433(7024):434-8. Epub 2005 Jan 12.

PMID:
15647753
8.
9.

Drosophila Ada2b is required for viability and normal histone H3 acetylation.

Qi D, Larsson J, Mannervik M.

Mol Cell Biol. 2004 Sep;24(18):8080-9.

10.

Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain.

Wallberg AE, Flinn EM, Gustafsson JA, Wright AP.

Biochem Soc Trans. 2000;28(4):410-4. Review.

PMID:
10961930
11.

Histone acetyltransferases and deacetylase in Entamoeba histolytica.

Ramakrishnan G, Gilchrist CA, Musa H, Torok MS, Grant PA, Mann BJ, Petri WA Jr.

Mol Biochem Parasitol. 2004 Dec;138(2):205-16.

PMID:
15555732
12.

Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation.

Brownell JE, Allis CD.

Curr Opin Genet Dev. 1996 Apr;6(2):176-84. Review.

PMID:
8722174
13.

Linking histone acetylation to transcriptional regulation.

Mizzen CA, Allis CD.

Cell Mol Life Sci. 1998 Jan;54(1):6-20. Review.

PMID:
9487383
14.
15.
16.

Histone H3 specific acetyltransferases are essential for cell cycle progression.

Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L.

Genes Dev. 2001 Dec 1;15(23):3144-54.

17.

Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.

Nourani A, Doyon Y, Utley RT, Allard S, Lane WS, Côté J.

Mol Cell Biol. 2001 Nov;21(22):7629-40.

18.

Schistosoma mansoni histone acetyltransferase GCN5: linking histone acetylation to gene activation.

de Moraes Maciel R, de Silva Dutra DL, Rumjanek FD, Juliano L, Juliano MA, Fantappié MR.

Mol Biochem Parasitol. 2004 Jan;133(1):131-5. No abstract available.

PMID:
14668020
19.
20.

Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation.

Wang L, Mizzen C, Ying C, Candau R, Barlev N, Brownell J, Allis CD, Berger SL.

Mol Cell Biol. 1997 Jan;17(1):519-27.

Supplemental Content

Support Center