Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

5 S rRNA is involved in fidelity of translational reading frame.

Dinman JD, Wickner RB.

Genetics. 1995 Sep;141(1):95-105.

2.

Efficient expression and utilization of mutant 5 S rRNA in Saccharomyces cerevisiae.

Van Ryk DI, Lee Y, Nazar RN.

J Biol Chem. 1990 May 25;265(15):8377-81.

3.

Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family.

Paulovich AG, Thompson JR, Larkin JC, Li Z, Woolford JL Jr.

Genetics. 1993 Nov;135(3):719-30.

5.
6.

Ribosomal frameshifting, jumping and readthrough.

Weiss RB.

Curr Opin Cell Biol. 1991 Dec;3(6):1051-5. Review.

PMID:
1814364
7.

Ribosomal frameshifting in yeast viruses.

Dinman JD.

Yeast. 1995 Sep 30;11(12):1115-27. Review.

PMID:
8619310
8.

In vivo analyses of upstream promoter sequence elements in the 5 S rRNA gene from Saccharomyces cerevisiae.

Lee Y, Wong WM, Guyer D, Erkine AM, Nazar RN.

J Mol Biol. 1997 Jun 27;269(5):676-83.

PMID:
9223632
9.

A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae.

Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ.

Genetics. 1993 Oct;135(2):309-20.

10.

A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.

Paul CP, Barry JK, Dinesh-Kumar SP, Brault V, Miller WA.

J Mol Biol. 2001 Jul 27;310(5):987-99.

PMID:
11502008
11.

Mutation of a highly conserved base in the yeast mitochondrial 21S rRNA restricts ribosomal frameshifting.

Weiss-Brummer B, Zollner A, Haid A, Thompson S.

Mol Gen Genet. 1995 Jul 28;248(2):207-16.

PMID:
7544431
12.

Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast.

Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ.

Mol Cell. 1999 Dec;4(6):1005-15.

13.

Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast.

Magazinnik T, Anand M, Sattlegger E, Hinnebusch AG, Kinzy TG.

Nucleic Acids Res. 2005 Aug 12;33(14):4584-92. Print 2005.

14.
15.

Increased -1 ribosomal frameshifting efficiency by yeast prion-like phenotype [PSI+].

Park HJ, Park SJ, Oh DB, Lee S, Kim YG.

FEBS Lett. 2009 Feb 18;583(4):665-9. doi: 10.1016/j.febslet.2009.01.015. Epub 2009 Jan 21.

16.

An mRNA sequence derived from a programmed frameshifting signal decreases codon discrimination during translation initiation.

Raman A, Guarraia C, Taliaferro D, Stahl G, Farabaugh PJ.

RNA. 2006 Jul;12(7):1154-60. Epub 2006 May 8.

17.

Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.

Márquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH.

Cell. 2004 Jul 9;118(1):45-55.

18.

Use of mutant RNAs in studies on yeast 5S rRNA structure and function.

Nazar RN, Van Ryk DI, Lee Y, Guyer CD.

Biochem Cell Biol. 1991 Apr;69(4):217-22. Review.

PMID:
2054154
19.

Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae.

Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD.

Mol Cell Biol. 2001 Dec;21(24):8264-75.

20.

Supplemental Content

Support Center