Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Structures and mechanisms of glycosyl hydrolases.

Davies G, Henrissat B.

Structure. 1995 Sep 15;3(9):853-9. Review.

2.

Structural and sequence-based classification of glycoside hydrolases.

Henrissat B, Davies G.

Curr Opin Struct Biol. 1997 Oct;7(5):637-44. Review.

PMID:
9345621
3.

Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering.

Planas A.

Biochim Biophys Acta. 2000 Dec 29;1543(2):361-382. Review.

PMID:
11150614
4.

Trapping of alpha-glycosidase intermediates.

Mosi RM, Withers SG.

Methods Enzymol. 2002;354:64-84. No abstract available.

PMID:
12418217
5.

Glycoside hydrolases: catalytic base/nucleophile diversity.

Vuong TV, Wilson DB.

Biotechnol Bioeng. 2010 Oct 1;107(2):195-205. doi: 10.1002/bit.22838. Review.

PMID:
20552664
6.

X-ray structure of an anti-fungal chitosanase from streptomyces N174.

Marcotte EM, Monzingo AF, Ernst SR, Brzezinski R, Robertus JD.

Nat Struct Biol. 1996 Feb;3(2):155-62.

PMID:
8564542
7.

Illuminating the ancient retainer.

Kirby AJ.

Nat Struct Biol. 1996 Feb;3(2):107-8. No abstract available.

PMID:
8564531
8.

Molecular evolution of plant beta-glucan endohydrolases.

Høj PB, Fincher GB.

Plant J. 1995 Mar;7(3):367-79.

9.

Glycoside hydrolases and glycosyltransferases: families and functional modules.

Bourne Y, Henrissat B.

Curr Opin Struct Biol. 2001 Oct;11(5):593-600. Review.

PMID:
11785761
10.

Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase.

St John FJ, Hurlbert JC, Rice JD, Preston JF, Pozharski E.

J Mol Biol. 2011 Mar 18;407(1):92-109. doi: 10.1016/j.jmb.2011.01.010. Epub 2011 Jan 19.

PMID:
21256135
11.

Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.

Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U.

J Mol Biol. 2006 Apr 7;357(4):1211-25. Epub 2006 Jan 25.

PMID:
16483609
12.

Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases.

Money VA, Smith NL, Scaffidi A, Stick RV, Gilbert HJ, Davies GJ.

Angew Chem Int Ed Engl. 2006 Aug 4;45(31):5136-40. No abstract available.

PMID:
16823793
13.
14.
15.

Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases.

Cuyvers S, Dornez E, Delcour JA, Courtin CM.

Crit Rev Biotechnol. 2012 Jun;32(2):93-107. doi: 10.3109/07388551.2011.561537. Epub 2011 Jun 28. Review.

PMID:
21711082
16.
17.

Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups.

St John FJ, González JM, Pozharski E.

FEBS Lett. 2010 Nov 5;584(21):4435-41. doi: 10.1016/j.febslet.2010.09.051. Epub 2010 Oct 8.

18.

The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes.

Higgins MA, Ficko-Blean E, Meloncelli PJ, Lowary TL, Boraston AB.

J Mol Biol. 2011 Sep 2;411(5):1017-36. doi: 10.1016/j.jmb.2011.06.035. Epub 2011 Jul 13.

PMID:
21767550
19.

Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes.

Tsai LC, Shyur LF, Lee SH, Lin SS, Yuan HS.

J Mol Biol. 2003 Jul 11;330(3):607-20.

PMID:
12842475
20.

Families, superfamilies and subfamilies of glycosyl hydrolases.

Henrissat B, Romeu A.

Biochem J. 1995 Oct 1;311 ( Pt 1):350-1. No abstract available.

Supplemental Content

Support Center