Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 337

1.

Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase.

Perona JJ, Rould MA, Steitz TA.

Biochemistry. 1993 Aug 31;32(34):8758-71.

PMID:
8364025
2.

Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.

Uemura H, Conley J, Yamao F, Rogers J, Söll D.

Protein Seq Data Anal. 1988;1(6):479-85.

PMID:
2464170
3.
4.

The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.

Belrhali H, Yaremchuk A, Tukalo M, Berthet-Colominas C, Rasmussen B, Bösecke P, Diat O, Cusack S.

Structure. 1995 Apr 15;3(4):341-52.

PMID:
7613865
5.
6.

Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.

Kobayashi T, Takimura T, Sekine R, Kelly VP, Kamata K, Sakamoto K, Nishimura S, Yokoyama S.

J Mol Biol. 2005 Feb 11;346(1):105-17. Erratum in: J Mol Biol. 2005 Dec 2;354(3):739. Vincent, Kelly [corrected to Kelly, Vincent P].

PMID:
15663931
7.

Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes.

Perona JJ, Swanson RN, Rould MA, Steitz TA, Söll D.

Science. 1989 Dec 1;246(4934):1152-4.

PMID:
2686030
8.

Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.

Arnez JG, Dock-Bregeon AC, Moras D.

J Mol Biol. 1999 Mar 12;286(5):1449-59.

PMID:
10064708
9.

Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.

Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D.

J Mol Biol. 2008 Sep 19;381(5):1224-37. doi: 10.1016/j.jmb.2008.06.053.

PMID:
18602926
10.
11.

Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.

Rould MA, Perona JJ, Steitz TA.

Nature. 1991 Jul 18;352(6332):213-8.

PMID:
1857417
12.
13.

The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.

Rogers MJ, Weygand-Durasević I, Schwob E, Sherman JM, Rogers KC, Thomann HU, Sylvers LA, Ohtsuka E, Inokuchi H, Söll D.

Nucleic Acids Symp Ser. 1993;(29):211-3.

PMID:
7504247
14.
15.

The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.

Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giegé R, Cambillau C.

J Mol Biol. 2004 Mar 19;337(2):273-83.

PMID:
15003446
16.

tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase.

Gruic-Sovulj I, Uter N, Bullock T, Perona JJ.

J Biol Chem. 2005 Jun 24;280(25):23978-86.

17.

Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.

Cusack S, Härtlein M, Leberman R.

Nucleic Acids Res. 1991 Jul 11;19(13):3489-98.

18.

Switching the amino acid specificity of an aminoacyl-tRNA synthetase.

Agou F, Quevillon S, Kerjan P, Mirande M.

Biochemistry. 1998 Aug 11;37(32):11309-14.

PMID:
9698378
19.

tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase.

Sherlin LD, Perona JJ.

Structure. 2003 May;11(5):591-603.

20.

Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.

Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW Jr.

J Mol Biol. 2003 Jan 3;325(1):39-63.

PMID:
12473451

Supplemental Content

Support Center