Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Application of the three-dimensional structures of protein target molecules in structure-based drug design.

Greer J, Erickson JW, Baldwin JJ, Varney MD.

J Med Chem. 1994 Apr 15;37(8):1035-54. Review. No abstract available.

PMID:
8164249
2.

Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design.

Rutenber E, Fauman EB, Keenan RJ, Fong S, Furth PS, Ortiz de Montellano PR, Meng E, Kuntz ID, DeCamp DL, Salto R, et al.

J Biol Chem. 1993 Jul 25;268(21):15343-6.

3.

Recent developments in structure-based drug design.

Klebe G.

J Mol Med (Berl). 2000;78(5):269-81. Review.

PMID:
10954199
4.

Structure-based design of novel HIV protease inhibitors: sulfonamide-containing 4-hydroxycoumarins and 4-hydroxy-2-pyrones as potent non-peptidic inhibitors.

Thaisrivongs S, Janakiraman MN, Chong KT, Tomich PK, Dolak LA, Turner SR, Strohbach JW, Lynn JC, Horng MM, Hinshaw RR, Watenpaugh KD.

J Med Chem. 1996 Jun 7;39(12):2400-10.

PMID:
8691434
5.

Non-peptidic HIV protease inhibitors: C2-symmetry-based design of bis-sulfonamide dihydropyrones.

Janakiraman MN, Watenpaugh KD, Tomich PK, Chong KT, Turner SR, Tommasi RA, Thaisrivongs S, Strohbach JW.

Bioorg Med Chem Lett. 1998 May 19;8(10):1237-42.

PMID:
9871742
6.
7.

Structure based design: novel spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors.

Ghosh AK, Krishnan K, Walters DE, Cho W, Cho H, Koo Y, Trevino J, Holland L, Buthod J.

Bioorg Med Chem Lett. 1998 Apr 21;8(8):979-82.

PMID:
9871524
9.

Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.

Perez MA, Fernandes PA, Ramos MJ.

J Mol Graph Model. 2007 Oct;26(3):634-42. Epub 2007 Mar 24.

PMID:
17459746
11.

Is resistance futile?

Kutilek VD, Sheeter DA, Elder JH, Torbett BE.

Curr Drug Targets Infect Disord. 2003 Dec;3(4):295-309. Review.

PMID:
14754431
12.

Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.

Meagher KL, Carlson HA.

J Am Chem Soc. 2004 Oct 20;126(41):13276-81.

PMID:
15479081
13.

Structure-based design and synthesis of HIV-1 protease inhibitors employing beta-D-mannopyranoside scaffolds.

Murphy PV, O'Brien JL, Gorey-Feret LJ, Smith AB 3rd.

Bioorg Med Chem Lett. 2002 Jul 8;12(13):1763-6.

PMID:
12067556
14.

Structure-based design and synthesis of substituted 2-butanols as nonpeptidic inhibitors of HIV protease: secondary amide series.

Reich SH, Melnick M, Pino MJ, Fuhry MA, Trippe AJ, Appelt K, Davies JF 2nd, Wu BW, Musick L.

J Med Chem. 1996 Jul 5;39(14):2781-94.

PMID:
8709109
15.

Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.

Frecer V, Burello E, Miertus S.

Bioorg Med Chem. 2005 Sep 15;13(18):5492-501.

PMID:
16054372
16.
17.

Active site binding modes of curcumin in HIV-1 protease and integrase.

Vajragupta O, Boonchoong P, Morris GM, Olson AJ.

Bioorg Med Chem Lett. 2005 Jul 15;15(14):3364-8.

PMID:
15950462
18.

An old target revisited: two new privileged skeletons and an unexpected binding mode for HIV-protease inhibitors.

Specker E, Böttcher J, Lilie H, Heine A, Schoop A, Müller G, Griebenow N, Klebe G.

Angew Chem Int Ed Engl. 2005 May 13;44(20):3140-4. No abstract available.

PMID:
15822136
19.
20.

De novo design of enzyme inhibitors by Monte Carlo ligand generation.

Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST.

J Med Chem. 1995 Feb 3;38(3):466-72.

PMID:
7853340

Supplemental Content

Support Center