Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Structural changes accompanying phosphorylation of tarantula muscle myosin filaments.

Craig R, Padrón R, Kendrick-Jones J.

J Cell Biol. 1987 Sep;105(3):1319-27.

2.

A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments.

Brito R, Alamo L, Lundberg U, Guerrero JR, Pinto A, Sulbarán G, Gawinowicz MA, Craig R, Padrón R.

J Mol Biol. 2011 Nov 18;414(1):44-61. doi: 10.1016/j.jmb.2011.09.017. Erratum in: J Mol Biol. 2014 Jan 9;426(1):272.

3.

Effects of phosphorylation by myosin light chain kinase on the structure of Limulus thick filaments.

Levine RJ, Chantler PD, Kensler RW, Woodhead JL.

J Cell Biol. 1991 May;113(3):563-72.

4.

X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle.

Padrón R, Panté N, Sosa H, Kendrick-Jones J.

J Muscle Res Cell Motil. 1991 Jun;12(3):235-41.

PMID:
1874965
5.

Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.

Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R.

J Mol Biol. 2008 Dec 26;384(4):780-97. doi: 10.1016/j.jmb.2008.10.013.

6.

Vectorial activation of smooth muscle myosin filaments and its modulation by telokin.

Sobieszek A.

Can J Physiol Pharmacol. 2005 Oct;83(10):899-912.

PMID:
16333362
7.

A new model for the surface arrangement of myosin molecules in tarantula thick filaments.

Offer G, Knight PJ, Burgess SA, Alamo L, Padrón R.

J Mol Biol. 2000 Apr 28;298(2):239-60.

PMID:
10764594
8.

A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.

Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC.

J Struct Biol. 2006 Aug;155(2):273-84.

PMID:
16793285
9.

Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

Alamo L, Qi D, Wriggers W, Pinto A, Zhu J, Bilbao A, Gillilan RE, Hu S, Padrón R.

J Mol Biol. 2016 Mar 27;428(6):1142-64. doi: 10.1016/j.jmb.2016.01.027.

PMID:
26851071
10.

Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.

Woodhead JL, Zhao FQ, Craig R.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8561-6. doi: 10.1073/pnas.1218462110.

11.

Inhibitory effect of phosphorylated myosin light chain kinase on the ATP-dependent actin-myosin interaction.

Samizo K, Okagaki T, Kohama K.

Biochem Biophys Res Commun. 1999 Jul 22;261(1):95-9.

PMID:
10405329
12.
13.

Interaction of bacterial flagellum filaments with skeletal muscle myosin.

Novikova NA, Levitsky DI, Metlina AL, Poglazov BF.

IUBMB Life. 2000 Dec;50(6):385-90.

14.
15.
16.

Myosin light chain kinase: functional domains and structural motifs.

Stull JT, Lin PJ, Krueger JK, Trewhella J, Zhi G.

Acta Physiol Scand. 1998 Dec;164(4):471-82. Review.

PMID:
9887970
17.

Phosphatase-mediated modulation of actin-myosin interaction in bovine aortic actomyosin and skinned porcine carotid artery.

Bialojan C, Rüegg JC, Di Salvo J.

Proc Soc Exp Biol Med. 1985 Jan;178(1):36-45.

PMID:
2981422
19.

The effect of Ca2+ on the structure of synthetic filaments of smooth muscle myosin.

Podlubnaya Z, Kulikova N, Dabrowska R.

J Muscle Res Cell Motil. 1999 Aug;20(5-6):547-54.

PMID:
10555073
20.

Physical integrity of smooth muscle myosin filaments is enhanced by phosphorylation of the regulatory myosin light chain.

Ip K, Sobieszek A, Solomon D, Jiao Y, Paré PD, Seow CY.

Cell Physiol Biochem. 2007;20(5):649-58.

Items per page

Supplemental Content

Support Center