Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

A two-step integration method for seamless gene deletion in baker's yeast.

Dong J, Wang G, Zhang C, Tan H, Sun X, Wu M, Xiao D.

Anal Biochem. 2013 Aug 1;439(1):30-6. doi: 10.1016/j.ab.2013.04.005. Epub 2013 Apr 15.

PMID:
23597844
2.

Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

Dong J, Chen D, Wang G, Zhang C, Du L, Liu S, Zhao Y, Xiao D.

J Ind Microbiol Biotechnol. 2016 Jun;43(6):817-28. doi: 10.1007/s10295-016-1753-7. Epub 2016 Mar 10.

PMID:
26965428
3.

MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough.

Sun X, Zhang CY, Wu MY, Fan ZH, Liu SN, Zhu WB, Xiao DG.

Microb Cell Fact. 2016 Apr 4;15:54. doi: 10.1186/s12934-016-0453-3.

4.

PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae.

Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K.

Yeast. 2006 Apr 15;23(5):399-405.

5.

Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

Tan H, Dong J, Wang G, Xu H, Zhang C, Xiao D.

J Ind Microbiol Biotechnol. 2014 Aug;41(8):1275-85. doi: 10.1007/s10295-014-1467-7. Epub 2014 Jun 21.

PMID:
24951963
6.

Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H.

J Biosci Bioeng. 2012 May;113(5):592-5. doi: 10.1016/j.jbiosc.2011.12.018. Epub 2012 Jan 26.

PMID:
22280966
7.

Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

Nakagawa Y, Ogihara H, Mochizuki C, Yamamura H, Iimura Y, Hayakawa M.

J Biosci Bioeng. 2017 Mar;123(3):319-326. doi: 10.1016/j.jbiosc.2016.10.008. Epub 2016 Nov 6.

PMID:
27829542
8.

Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R.

Appl Microbiol Biotechnol. 2004 Jul;65(1):68-73. Epub 2004 Feb 3.

PMID:
14758521
9.

A new method for repeated "self-cloning" promoter replacement in Saccharomyces cerevisiae.

Sofyanovich OA, Nishiuchi H, Yamagishi K, Maekawa K, Serebryanyy VA.

Mol Biotechnol. 2011 Jul;48(3):218-27. doi: 10.1007/s12033-010-9362-6.

PMID:
21170609
10.

[Constructing recombinant plasmid pSH-CUP and knockout of acid trehalase gene in baker's yeast].

He D, Xiao D, Lv Y.

Wei Sheng Wu Xue Bao. 2008 Feb;48(2):147-51. Chinese.

PMID:
18437993
11.

Mechanism of high trehalose accumulation in a spore clone isolated from Shirakami kodama yeast.

Nakazawa N, Obata Y, Ito K, Oto M, Ito T, Takahashi K.

J Gen Appl Microbiol. 2014;60(4):147-55.

12.

New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.

Codón AC, Rincón AM, Moreno-Mateos MA, Delgado-Jarana J, Rey M, Limón C, Rosado IV, Cubero B, Peñate X, Castrejón F, Benítez T.

J Agric Food Chem. 2003 Jan 15;51(2):483-91.

PMID:
12517114
13.

Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

Sasano Y, Haitani Y, Hashida K, Oshiro S, Shima J, Takagi H.

Int J Food Microbiol. 2013 Aug 1;165(3):241-5. doi: 10.1016/j.ijfoodmicro.2013.05.015. Epub 2013 May 28.

PMID:
23800735
14.

Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast.

Noskov VN, Segall-Shapiro TH, Chuang RY.

Nucleic Acids Res. 2010 May;38(8):2570-6. doi: 10.1093/nar/gkq099. Epub 2010 Mar 12.

15.

Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

Tsolmonbaatar A, Hashida K, Sugimoto Y, Watanabe D, Furukawa S, Takagi H.

Int J Food Microbiol. 2016 Dec 5;238:233-240. doi: 10.1016/j.ijfoodmicro.2016.09.015. Epub 2016 Sep 22.

PMID:
27672730
16.

Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae.

Kaneko S, Tanaka T, Noda H, Fukuda H, Akada R, Kondo A.

Appl Microbiol Biotechnol. 2009 Jun;83(4):783-9. doi: 10.1007/s00253-009-2038-0. Epub 2009 May 20.

PMID:
19455322
17.

The 50:50 method for PCR-based seamless genome editing in yeast.

Horecka J, Davis RW.

Yeast. 2014 Mar;31(3):103-12. doi: 10.1002/yea.2992. Epub 2013 Dec 13.

18.

Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

Sasano Y, Takahashi S, Shima J, Takagi H.

Int J Food Microbiol. 2010 Mar 31;138(1-2):181-5. doi: 10.1016/j.ijfoodmicro.2010.01.001. Epub 2010 Jan 11.

PMID:
20096471
19.

Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H.

Biosci Biotechnol Biochem. 2012;76(3):624-7.

20.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462

Supplemental Content

Support Center