Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

Djonović S, Urbach JM, Drenkard E, Bush J, Feinbaum R, Ausubel JL, Traficante D, Risech M, Kocks C, Fischbach MA, Priebe GP, Ausubel FM.

PLoS Pathog. 2013 Mar;9(3):e1003217. doi: 10.1371/journal.ppat.1003217. Epub 2013 Mar 7.

2.

Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice.

Hendrickson EL, Plotnikova J, Mahajan-Miklos S, Rahme LG, Ausubel FM.

J Bacteriol. 2001 Dec;183(24):7126-34.

3.

Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis.

Plotnikova JM, Rahme LG, Ausubel FM.

Plant Physiol. 2000 Dec;124(4):1766-74.

4.

The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice.

Yorgey P, Rahme LG, Tan MW, Ausubel FM.

Mol Microbiol. 2001 Sep;41(5):1063-76.

5.

Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans.

Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, Dayakar BV, Schweizer HP, Vivanco JM.

Infect Immun. 2005 Sep;73(9):5319-28.

6.

The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes.

He J, Baldini RL, Déziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG.

Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2530-5.

7.

Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation.

Sugawara M, Cytryn EJ, Sadowsky MJ.

Appl Environ Microbiol. 2010 Feb;76(4):1071-81. doi: 10.1128/AEM.02483-09. Epub 2009 Dec 18.

8.

Common virulence factors for bacterial pathogenicity in plants and animals.

Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM.

Science. 1995 Jun 30;268(5219):1899-902.

PMID:
7604262
9.

Modeling Pseudomonas aeruginosa pathogenesis in plant hosts.

Starkey M, Rahme LG.

Nat Protoc. 2009;4(2):117-24. doi: 10.1038/nprot.2008.224.

PMID:
19180083
10.

Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors.

Rahme LG, Tan MW, Le L, Wong SM, Tompkins RG, Calderwood SB, Ausubel FM.

Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13245-50.

11.

Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere.

Freeman BC, Chen C, Beattie GA.

Environ Microbiol. 2010 Jun;12(6):1486-97. doi: 10.1111/j.1462-2920.2010.02171.x. Epub 2010 Feb 18.

PMID:
20192963
12.

Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation.

Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM.

Plant Physiol. 2004 Jan;134(1):320-31. Epub 2003 Dec 30.

13.

Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis.

Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG.

Plant Physiol. 2012 Aug;159(4):1367-84. doi: 10.1104/pp.112.198119. Epub 2012 Jun 13.

14.

Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains.

Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, Skelton J, Kay RR, Ivens A, Martinez JL, Escalante R.

BMC Microbiol. 2008 Jun 30;8:109. doi: 10.1186/1471-2180-8-109.

15.

Assessing Pseudomonas virulence with the nonmammalian host model: Arabidopsis thaliana.

Baldini RL, Starkey M, Rahme LG.

Methods Mol Biol. 2014;1149:689-97. doi: 10.1007/978-1-4939-0473-0_53.

PMID:
24818943
16.
17.

Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA.

Kim SH, Park SY, Heo YJ, Cho YH.

Infect Immun. 2008 Sep;76(9):4152-62. doi: 10.1128/IAI.01637-07. Epub 2008 Jun 30.

18.

Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis.

Zabotina OA, van de Ven WT, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV.

Plant J. 2008 Oct;56(1):101-15. doi: 10.1111/j.1365-313X.2008.03580.x. Epub 2008 Jun 28. Erratum in: Plant J. 2009 Jan;57(2):386.

19.

Trehalose metabolism and glucose sensing in plants.

Avonce N, Leyman B, Thevelein J, Iturriaga G.

Biochem Soc Trans. 2005 Feb;33(Pt 1):276-9. Erratum in: Biochem Soc Trans. 2005 Dec;33(Pt 6):1547.

PMID:
15667325
20.

Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition.

García-Andrade J, Ramírez V, Flors V, Vera P.

Plant J. 2011 Sep;67(5):783-94. doi: 10.1111/j.1365-313X.2011.04633.x. Epub 2011 Jun 21.

Supplemental Content

Support Center