Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death.

Adams DJ, Boskovic ZV, Theriault JR, Wang AJ, Stern AM, Wagner BK, Shamji AF, Schreiber SL.

ACS Chem Biol. 2013 May 17;8(5):923-9. doi: 10.1021/cb300653v. Epub 2013 Mar 25.

2.

Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer.

Roh JL, Kim EH, Park JY, Kim JW, Kwon M, Lee BH.

Oncotarget. 2014 Oct 15;5(19):9227-38.

3.

Selective killing of cancer cells by a small molecule targeting the stress response to ROS.

Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW.

Nature. 2011 Jul 13;475(7355):231-4. doi: 10.1038/nature10167. Erratum in: Nature. 2012 Jan 26;481(7382):534. Nature. 2015 Oct 22;526(7574):596.

4.

Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs.

Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, Schreiber SL.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15115-20. Epub 2012 Sep 4.

5.

Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine.

Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A.

Cell Death Differ. 2004 Jul;11(7):737-46.

6.

Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.

You BR, Park WH.

Oncol Rep. 2012 Aug;28(2):749-57. doi: 10.3892/or.2012.1852. Epub 2012 Jun 6.

PMID:
22684917
7.

Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation.

Liu JM, Pan F, Li L, Liu QR, Chen Y, Xiong XX, Cheng K, Yu SB, Shi Z, Yu AC, Chen XQ.

Biochem Biophys Res Commun. 2013 Jul 19;437(1):87-93. doi: 10.1016/j.bbrc.2013.06.042. Epub 2013 Jun 22.

PMID:
23796709
8.

Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase.

You BR, Park WH.

Toxicol In Vitro. 2010 Aug;24(5):1356-62. doi: 10.1016/j.tiv.2010.04.009. Epub 2010 Apr 22.

PMID:
20417267
9.
10.

2-Phenylethynesulfonamide (PES) uncovers a necrotic process regulated by oxidative stress and p53.

Mattiolo P, Barbero-Farran A, Yuste VJ, Boix J, Ribas J.

Biochem Pharmacol. 2014 Oct 1;91(3):301-11. doi: 10.1016/j.bcp.2014.08.005. Epub 2014 Aug 16.

PMID:
25139326
11.

Biological activity of dihydroartemisinin in canine osteosarcoma cell lines.

Hosoya K, Murahari S, Laio A, London CA, Couto CG, Kisseberth WC.

Am J Vet Res. 2008 Apr;69(4):519-26. doi: 10.2460/ajvr.69.4.519.

PMID:
18380584
12.

Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death.

Wang L, Yu Y, Chow DC, Yan F, Hsu CC, Stossi F, Mancini MA, Palzkill T, Liao L, Zhou S, Xu J, Lonard DM, O'Malley BW.

Cancer Cell. 2015 Aug 10;28(2):240-52. doi: 10.1016/j.ccell.2015.07.005.

13.

Effective Killing of Cancer Cells Through ROS-Mediated Mechanisms by AMRI-59 Targeting Peroxiredoxin I.

Yang YJ, Baek JY, Goo J, Shin Y, Park JK, Jang JY, Wang SB, Jeong W, Lee HJ, Um HD, Lee SK, Choi Y, Rhee SG, Chang TS.

Antioxid Redox Signal. 2016 Mar 10;24(8):453-69. doi: 10.1089/ars.2014.6187. Epub 2015 Dec 18.

PMID:
26528922
14.

N-(4-Hydroxyphenyl)retinamide (4-HPR) induces leukemia cell death via generation of reactive oxygen species.

Goto H, Takahashi H, Fujii H, Ikuta K, Yokota S.

Int J Hematol. 2003 Oct;78(3):219-25.

PMID:
14604280
15.

PKCδ sensitizes neuroblastoma cells to L-buthionine-sulfoximine and etoposide inducing reactive oxygen species overproduction and DNA damage.

Marengo B, De Ciucis C, Ricciarelli R, Passalacqua M, Nitti M, Zingg JM, Marinari UM, Pronzato MA, Domenicotti C.

PLoS One. 2011 Feb 7;6(2):e14661. doi: 10.1371/journal.pone.0014661.

16.

Chloroquine inhibits glutamate-induced death of a neuronal cell line by reducing reactive oxygen species through sigma-1 receptor.

Hirata Y, Yamamoto H, Atta MS, Mahmoud S, Oh-hashi K, Kiuchi K.

J Neurochem. 2011 Nov;119(4):839-47. doi: 10.1111/j.1471-4159.2011.07464.x. Epub 2011 Oct 3.

17.
18.

Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach.

Kiebala M, Skalska J, Casulo C, Brookes PS, Peterson DR, Hilchey SP, Dai Y, Grant S, Maggirwar SB, Bernstein SH.

Exp Hematol. 2015 Feb;43(2):89-99. doi: 10.1016/j.exphem.2014.10.004. Epub 2014 Oct 22.

19.

Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model.

León IE, Porro V, Astrada S, Egusquiza MG, Cabello CI, Bollati-Fogolin M, Etcheverry SB.

Chem Biol Interact. 2014 Oct 5;222:87-96. doi: 10.1016/j.cbi.2014.10.012. Epub 2014 Oct 22.

PMID:
25451568
20.

Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines.

Rogalska A, Koceva-Chyła A, Jóźwiak Z.

Chem Biol Interact. 2008 Oct 22;176(1):58-70. doi: 10.1016/j.cbi.2008.07.002. Epub 2008 Jul 22.

PMID:
18692031

Supplemental Content

Support Center