Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

3'-RACE Amplification of Aminopeptidase N Gene from Anopheles stephensi Applicable in Transmission Blocking Vaccines.

Bokharaei H, Raz A, Zakeri S, Djadid ND.

Avicenna J Med Biotechnol. 2012 Jul;4(3):131-41.

2.

Molecular characterization of the carboxypeptidase B1 of Anopheles stephensi and its evaluation as a target for transmission-blocking vaccines.

Raz A, Dinparast Djadid N, Zakeri S.

Infect Immun. 2013 Jun;81(6):2206-16. doi: 10.1128/IAI.01331-12. Epub 2013 Apr 8.

3.

Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi.

VenkatRao V, Kumar SK, Sridevi P, Muley VY, Chaitanya RK.

Acta Trop. 2017 Apr;168:21-28. doi: 10.1016/j.actatropica.2016.12.035. Epub 2017 Jan 10.

PMID:
28087198
4.

Cloning, expression and transmission-blocking activity of anti-PvWARP, malaria vaccine candidate, in Anopheles stephensi mysorensis.

Gholizadeh S, Basseri HR, Zakeri S, Ladoni H, Djadid ND.

Malar J. 2010 Jun 11;9:158. doi: 10.1186/1475-2875-9-158.

5.

Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi.

Dinglasan RR, Fields I, Shahabuddin M, Azad AF, Sacci JB Jr.

Infect Immun. 2003 Dec;71(12):6995-7001.

6.

Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.

Borhani Dizaji N, Basseri HR, Naddaf SR, Heidari M.

Gene. 2014 Oct 25;550(2):245-52. doi: 10.1016/j.gene.2014.08.036. Epub 2014 Aug 20.

PMID:
25150160
7.

Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine.

Lavazec C, Boudin C, Lacroix R, Bonnet S, Diop A, Thiberge S, Boisson B, Tahar R, Bourgouin C.

Infect Immun. 2007 Apr;75(4):1635-42. Epub 2007 Feb 5.

8.

Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran.

Djadid ND, Gholizadeh S, Aghajari M, Zehi AH, Raeisi A, Zakeri S.

Acta Trop. 2006 Jan;97(1):65-74. Epub 2005 Sep 26.

PMID:
16188214
9.

The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti.

Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE.

Int J Parasitol. 2003 Aug;33(9):933-43. Erratum in: Int J Parasitol. 2004 Feb;34(2):245-7.

PMID:
12906877
10.

Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle.

Basseri HR, Doosti S, Akbarzadeh K, Nateghpour M, Whitten MM, Ladoni H.

Malar J. 2008 Jul 15;7:131. doi: 10.1186/1475-2875-7-131.

11.

Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine.

Mathias DK, Plieskatt JL, Armistead JS, Bethony JM, Abdul-Majid KB, McMillan A, Angov E, Aryee MJ, Zhan B, Gillespie P, Keegan B, Jariwala AR, Rezende W, Bottazzi ME, Scorpio DG, Hotez PJ, Dinglasan RR.

Infect Immun. 2012 Apr;80(4):1606-14. doi: 10.1128/IAI.06212-11. Epub 2012 Feb 6.

12.

Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

Kajla M, Kakani P, Choudhury TP, Gupta K, Gupta L, Kumar S.

Acta Trop. 2016 Jun;158:107-16. doi: 10.1016/j.actatropica.2016.02.028. Epub 2016 Mar 2.

PMID:
26943999
13.

Generation, annotation, and analysis of ESTs from midgut tissue of adult female Anopheles stephensi mosquitoes.

Patil DP, Atanur S, Dhotre DP, Anantharam D, Mahajan VS, Walujkar SA, Chandode RK, Kulkarni GJ, Ghate PS, Srivastav A, Dayananda KM, Gupta N, Bhagwat B, Joshi RR, Mourya DT, Patole MS, Shouche YS.

BMC Genomics. 2009 Aug 20;10:386. doi: 10.1186/1471-2164-10-386.

14.

Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi.

Lucantoni L, Yerbanga RS, Lupidi G, Pasqualini L, Esposito F, Habluetzel A.

Malar J. 2010 Mar 2;9:66. doi: 10.1186/1475-2875-9-66.

15.
16.

Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China.

Zhu G, Xia H, Zhou H, Li J, Lu F, Liu Y, Cao J, Gao Q, Sattabongkot J.

Parasit Vectors. 2013 Jun 14;6:176. doi: 10.1186/1756-3305-6-176.

17.

Inhibition of malaria parasite development in mosquitoes by anti-mosquito-midgut antibodies.

Lal AA, Schriefer ME, Sacci JB, Goldman IF, Louis-Wileman V, Collins WE, Azad AF.

Infect Immun. 1994 Jan;62(1):316-8.

19.

Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control.

Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P, Crotti E, Epis S, Angeletti M, Valzano M, Sacchi L, Bandi C, Daffonchio D, Mandrioli M, Favia G.

Parasit Vectors. 2013 Jun 18;6(1):182. doi: 10.1186/1756-3305-6-182.

20.

Supplemental Content

Support Center