Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

Finding the sources of missing heritability in a yeast cross.

Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L.

Nature. 2013 Feb 14;494(7436):234-7. doi: 10.1038/nature11867. Epub 2013 Feb 3.

2.

Genetic interactions contribute less than additive effects to quantitative trait variation in yeast.

Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L.

Nat Commun. 2015 Nov 5;6:8712. doi: 10.1038/ncomms9712.

3.

Dissection of genetically complex traits with extremely large pools of yeast segregants.

Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L.

Nature. 2010 Apr 15;464(7291):1039-42. doi: 10.1038/nature08923.

4.

Statistical power of expression quantitative trait loci for mapping of complex trait loci in natural populations.

Schliekelman P.

Genetics. 2008 Apr;178(4):2201-16. doi: 10.1534/genetics.107.076687. Epub 2008 Feb 3.

5.

Genetic dissection of complex traits in yeast: insights from studies of gene expression and other phenotypes in the BYxRM cross.

Ehrenreich IM, Gerke JP, Kruglyak L.

Cold Spring Harb Symp Quant Biol. 2009;74:145-53. doi: 10.1101/sqb.2009.74.013. Epub 2009 Sep 4. Review.

6.

The landscape of genetic complexity across 5,700 gene expression traits in yeast.

Brem RB, Kruglyak L.

Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7. Epub 2005 Jan 19.

7.

Mapping quantitative trait loci for binary trait in the F2:3 design.

Zhu C, Zhang YM, Guo Z.

J Genet. 2008 Dec;87(3):201-7.

8.

High-resolution mapping of complex traits with a four-parent advanced intercross yeast population.

Cubillos FA, Parts L, Salinas F, Bergström A, Scovacricchi E, Zia A, Illingworth CJ, Mustonen V, Ibstedt S, Warringer J, Louis EJ, Durbin R, Liti G.

Genetics. 2013 Nov;195(3):1141-55. doi: 10.1534/genetics.113.155515. Epub 2013 Sep 13.

9.

Genome-wide eQTLs and heritability for gene expression traits in unrelated individuals.

Yang S, Liu Y, Jiang N, Chen J, Leach L, Luo Z, Wang M.

BMC Genomics. 2014 Jan 9;15:13. doi: 10.1186/1471-2164-15-13.

10.

Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity.

Matsui T, Linder R, Phan J, Seidl F, Ehrenreich IM.

Genetics. 2015 Oct;201(2):769-77. doi: 10.1534/genetics.115.180661. Epub 2015 Jul 30.

11.

Assumptions and properties of limiting pathway models for analysis of epistasis in complex traits.

Stringer S, Derks EM, Kahn RS, Hill WG, Wray NR.

PLoS One. 2013 Jul 30;8(7):e68913. doi: 10.1371/journal.pone.0068913. Print 2013.

12.

Estimation of epistatic variance components and heritability in founder populations and crosses.

Young AI, Durbin R.

Genetics. 2014 Dec;198(4):1405-16. doi: 10.1534/genetics.114.170795. Epub 2014 Oct 17.

13.

Genetic architecture of highly complex chemical resistance traits across four yeast strains.

Ehrenreich IM, Bloom J, Torabi N, Wang X, Jia Y, Kruglyak L.

PLoS Genet. 2012;8(3):e1002570. doi: 10.1371/journal.pgen.1002570. Epub 2012 Mar 15.

14.

Sequential quantitative trait locus mapping in experimental crosses.

Satagopan JM, Sen S, Churchill GA.

Stat Appl Genet Mol Biol. 2007;6:Article12. Epub 2007 Apr 17.

PMID:
17474878
15.

Explaining the heritability of an ecologically significant trait in terms of individual quantitative trait loci.

Scoville AG, Lee YW, Willis JH, Kelly JK.

Biol Lett. 2011 Dec 23;7(6):896-8. doi: 10.1098/rsbl.2011.0409. Epub 2011 Jun 8.

16.

Finding genes that underlie complex traits.

Glazier AM, Nadeau JH, Aitman TJ.

Science. 2002 Dec 20;298(5602):2345-9. Review.

PMID:
12493905
17.

Dominance genetic variation contributes little to the missing heritability for human complex traits.

Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH, Nolte IM, van Vliet-Ostaptchouk JV, Snieder H; LifeLines Cohort Study, Esko T, Milani L, Mägi R, Metspalu A, Hill WG, Weir BS, Goddard ME, Visscher PM, Yang J.

Am J Hum Genet. 2015 Mar 5;96(3):377-85. doi: 10.1016/j.ajhg.2015.01.001. Epub 2015 Feb 12.

18.

Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide.

Diezmann S, Dietrich FS.

Genetics. 2011 Jul;188(3):709-22. doi: 10.1534/genetics.111.128256. Epub 2011 Apr 21.

19.

Mixture generalized linear models for multiple interval mapping of quantitative trait Loci in experimental crosses.

Chen Z, Liu J.

Biometrics. 2009 Jun;65(2):470-7. doi: 10.1111/j.1541-0420.2008.01100.x. Epub 2008 Jul 18.

PMID:
18647293
20.

Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

Swinnen S, Thevelein JM, Nevoigt E.

FEMS Yeast Res. 2012 Mar;12(2):215-27. doi: 10.1111/j.1567-1364.2011.00777.x. Epub 2012 Jan 24. Review.

Supplemental Content

Support Center