Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

An integrative model of ion regulation in yeast.

Ke R, Ingram PJ, Haynes K.

PLoS Comput Biol. 2013;9(1):e1002879. doi: 10.1371/journal.pcbi.1002879. Epub 2013 Jan 17.

2.
4.

The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.

Ye T, Elbing K, Hohmann S.

Microbiology. 2008 Sep;154(Pt 9):2814-26. doi: 10.1099/mic.0.2008/020149-0.

PMID:
18757815
5.

Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae.

Sychrová H, Ramírez J, Peña A.

FEMS Microbiol Lett. 1999 Feb 15;171(2):167-72.

6.

The Na+,K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae.

Kinclova-Zimmermannova O, Gaskova D, Sychrova H.

FEMS Yeast Res. 2006 Aug;6(5):792-800.

8.

Integrative responses to high pH stress in S. cerevisiae.

Ariño J.

OMICS. 2010 Oct;14(5):517-23. doi: 10.1089/omi.2010.0044. Epub 2010 Aug 20. Review.

PMID:
20726779
9.

The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae.

Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM.

J Biol Chem. 1994 Mar 25;269(12):8792-6.

10.

Regulation of monovalent ion homeostasis and pH by the Ser-Thr protein phosphatase SIT4 in Saccharomyces cerevisiae.

Masuda CA, Ramírez J, Peña A, Montero-Lomelí M.

J Biol Chem. 2000 Oct 6;275(40):30957-61.

11.

Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles.

Xue-Franzén Y, Johnsson A, Brodin D, Henriksson J, Bürglin TR, Wright AP.

BMC Genomics. 2010 Mar 25;11:200. doi: 10.1186/1471-2164-11-200.

12.

Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae.

Stříbný J, Kinclová-Zimmermannová O, Sychrová H.

Curr Genet. 2012 Dec;58(5-6):255-64. doi: 10.1007/s00294-012-0381-7. Epub 2012 Sep 5.

PMID:
22948499
13.

Protective effect of ions against cell death induced by acid stress in Saccharomyces.

Sant'Ana GS, Paes LS, Paiva AF, Fietto LG, Totola AH, Trópia MJ, Silveira-Lemos D, Lucas C, Fietto JL, Brandão RL, Castro IM.

FEMS Yeast Res. 2009 Aug;9(5):701-12. doi: 10.1111/j.1567-1364.2009.00523.x. Epub 2009 May 16.

14.

Pho85 kinase, a cyclin-dependent kinase, regulates nuclear accumulation of the Rim101 transcription factor in the stress response of Saccharomyces cerevisiae.

Nishizawa M, Tanigawa M, Hayashi M, Maeda T, Yazaki Y, Saeki Y, Toh-e A.

Eukaryot Cell. 2010 Jun;9(6):943-51. doi: 10.1128/EC.00247-09. Epub 2010 Apr 9.

15.
16.
17.

Mathematical Modelling of Cation Transport and Regulation in Yeast.

Kahm M, Kschischo M.

Adv Exp Med Biol. 2016;892:291-305. doi: 10.1007/978-3-319-25304-6_12. Review.

PMID:
26721279
18.
19.

Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.

Serrano R, Martín H, Casamayor A, Ariño J.

J Biol Chem. 2006 Dec 29;281(52):39785-95. Epub 2006 Nov 6.

20.

Supplemental Content

Support Center