Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

JAK2V617F and p53 mutations coexist in erythroleukemia and megakaryoblastic leukemic cell lines.

Zhao W, Du Y, Ho WT, Fu X, Zhao ZJ.

Exp Hematol Oncol. 2012 Jun 21;1(1):15. doi: 10.1186/2162-3619-1-15.

2.

Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms.

Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, Otto GA, Yelensky R, Hricik T, McKenney AS, Chiosis G, Chung YR, Pandey S, van den Brink MR, Armstrong SA, Dogan A, Intlekofer A, Manshouri T, Park CY, Verstovsek S, Rapaport F, Stephens PJ, Miller VA, Levine RL.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5401-10. doi: 10.1073/pnas.1407792111. Epub 2014 Dec 2.

3.

[Anti-angiogenic effect of interferon on JAK2V617F positive myeloproliferative neoplasms and its anti-angiogenic mechanisms].

Fu J, Xu Q, Zhao Y, Liu G, Cheng Z, Liang W, Xie X, Gu L.

Zhonghua Yi Xue Za Zhi. 2015 Dec 8;95(46):3727-32. Chinese.

PMID:
26850010
4.

JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2.

Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S, Kurokawa M.

Blood. 2014 Nov 6;124(19):2996-3006. doi: 10.1182/blood-2014-04-570572. Epub 2014 Sep 12.

5.
6.

[Regulation of Ruxolitinib on matrix metalloproteinase in JAK2V617F positive myeloroliferative neoplasms cells].

Liu GM, Zhang LJ, Fu JZ, Liang WT, Cheng ZY, Bai P, Bian YS, Wan JS.

Zhonghua Xue Ye Xue Za Zhi. 2017 Feb 14;38(2):140-145. doi: 10.3760/cma.j.issn.0253-2727.2017.02.011. Chinese.

PMID:
28279039
7.

Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms.

Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M, Hidaka T, Kubuki Y, Sashida G, Aoyama K, Yoshimitsu M, Abe H, Miike T, Iwakiri H, Tahara Y, Yamamoto S, Hasuike S, Nagata K, Iwama A, Kitanaka A, Shimoda K.

Genom Data. 2015 Apr 9;4:102-8. doi: 10.1016/j.gdata.2015.04.002. eCollection 2015 Jun.

8.

Development of a highly sensitive method for detection of JAK2V617F.

Zhao AH, Gao R, Zhao ZJ.

J Hematol Oncol. 2011 Oct 10;4:40. doi: 10.1186/1756-8722-4-40.

9.

Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice.

Akada H, Akada S, Hutchison RE, Mohi G.

Leukemia. 2014 Aug;28(8):1627-35. doi: 10.1038/leu.2014.52. Epub 2014 Jan 31.

10.

JAK2V617F mutations in myeloid malignancies: single center experience.

Panovska-Stavridis I, Cevreska L, Ivanovski M, Stojanovik A, Lozance M, Matevska N, Dimovski A, Serafimoski V.

Prilozi. 2008 Dec;29(2):257-67.

PMID:
19259051
11.

JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.

Chen E, Ahn JS, Massie CE, Clynes D, Godfrey AL, Li J, Park HJ, Nangalia J, Silber Y, Mullally A, Gibbons RJ, Green AR.

Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15190-5. doi: 10.1073/pnas.1401873111. Epub 2014 Oct 6.

12.

Tyrosine 201 is required for constitutive activation of JAK2V617F and efficient induction of myeloproliferative disease in mice.

Yan D, Hutchison RE, Mohi G.

Blood. 2012 Aug 30;120(9):1888-98. doi: 10.1182/blood-2011-09-380808. Epub 2012 Jul 26.

13.

[Effect of IFN-╬▒2b on COX-2 and Angiogenesis in JAK2V617F Mutation Myeloproliferative Neoplasms].

Zhao YL, Zhang LJ, Fu JZ, Xu Q, Liu GM, Xie XL, Liang WT, Cheng ZY.

Sichuan Da Xue Xue Bao Yi Xue Ban. 2016 Jul;47(4):473-478. Chinese.

PMID:
28591945
14.
15.

IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms.

de Melo Campos P, Machado-Neto JA, Eide CA, Savage SL, Scopim-Ribeiro R, da Silva Souza Duarte A, Favaro P, Lorand-Metze I, Costa FF, Tognon CE, Druker BJ, Olalla Saad ST, Traina F.

Oncotarget. 2016 Feb 9;7(6):6948-59. doi: 10.18632/oncotarget.6851.

16.

Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myeloproliferative neoplasm cells.

Mitsumori T, Nozaki Y, Kawashima I, Yamamoto T, Shobu Y, Nakajima K, Morishita S, Komatsu N, Kirito K.

Exp Hematol. 2014 Sep;42(9):783-92.e1. doi: 10.1016/j.exphem.2014.05.007. Epub 2014 May 23.

PMID:
24860972
17.

Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease.

Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG.

Blood. 2010 Apr 29;115(17):3589-97. doi: 10.1182/blood-2009-04-215848. Epub 2010 Mar 2.

18.

Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm.

Beer PA, Delhommeau F, LeCou├ędic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, Vainchenker W, Green AR.

Blood. 2010 Apr 8;115(14):2891-900. doi: 10.1182/blood-2009-08-236596. Epub 2009 Dec 11.

19.

Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival.

Rubert J, Qian Z, Andraos R, Guthy DA, Radimerski T.

BMC Cancer. 2011 Jan 19;11:24. doi: 10.1186/1471-2407-11-24.

20.

Loss of p53 tumor suppressor function is required for in vivo progression of Friend erythroleukemia.

Prasher JM, Elenitoba-Johnson KS, Kelley LL.

Oncogene. 2001 May 24;20(23):2946-55.

Supplemental Content

Support Center