Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation.

Wang M, Amano SU, Flach RJ, Chawla A, Aouadi M, Czech MP.

Mol Cell Biol. 2013 Feb;33(4):678-87. doi: 10.1128/MCB.00618-12. Epub 2012 Dec 3.

2.

Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway.

Murray J, Huss JM.

Am J Physiol Cell Physiol. 2011 Sep;301(3):C630-45. doi: 10.1152/ajpcell.00033.2011. Epub 2011 May 11.

3.

Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation.

Marino JS, Hinds TD Jr, Potter RA, Ondrus E, Onion JL, Dowling A, McLoughlin TJ, Sanchez ER, Hill JW.

BMC Cell Biol. 2013 Sep 21;14:39. doi: 10.1186/1471-2121-14-39.

4.

MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-alpha-induced insulin resistance.

Bouzakri K, Zierath JR.

J Biol Chem. 2007 Mar 16;282(11):7783-9. Epub 2007 Jan 16.

6.

Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1.

Lee HJ, Bae GU, Leem YE, Choi HK, Kang TM, Cho H, Kim ST, Kang JS.

Mol Biol Cell. 2012 Apr;23(7):1376-87. doi: 10.1091/mbc.E11-07-0634. Epub 2012 Feb 1.

7.

Interaction of scaffolding adaptor protein Gab1 with tyrosine phosphatase SHP2 negatively regulates IGF-I-dependent myogenic differentiation via the ERK1/2 signaling pathway.

Koyama T, Nakaoka Y, Fujio Y, Hirota H, Nishida K, Sugiyama S, Okamoto K, Yamauchi-Takihara K, Yoshimura M, Mochizuki S, Hori M, Hirano T, Mochizuki N.

J Biol Chem. 2008 Aug 29;283(35):24234-44. doi: 10.1074/jbc.M803907200. Epub 2008 Jun 23.

8.

Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis.

Panda AC, Abdelmohsen K, Martindale JL, Di Germanio C, Yang X, Grammatikakis I, Noh JH, Zhang Y, Lehrmann E, Dudekula DB, De S, Becker KG, White EJ, Wilson GM, de Cabo R, Gorospe M.

Nucleic Acids Res. 2016 Mar 18;44(5):2393-408. doi: 10.1093/nar/gkw023. Epub 2016 Jan 26.

9.

Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts.

Yi X, Tao Y, Lin X, Dai Y, Yang T, Yue X, Jiang X, Li X, Jiang DS, Andrade KC, Chang J.

Biochim Biophys Acta. 2017 Apr;1864(4):697-707. doi: 10.1016/j.bbamcr.2017.01.012. Epub 2017 Jan 24.

PMID:
28130125
10.

A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis.

Han XH, Jin YR, Seto M, Yoon JK.

J Biol Chem. 2011 Mar 25;286(12):10649-59. doi: 10.1074/jbc.M110.169391. Epub 2011 Jan 20.

11.

MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis.

Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K, Asada S, Takahashi T, Matsubara H, Oh H.

Am J Physiol Cell Physiol. 2008 Aug;295(2):C490-8. doi: 10.1152/ajpcell.00188.2008. Epub 2008 May 28.

PMID:
18508909
12.

Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.

McClure MJ, Clark NM, Hyzy SL, Chalfant CE, Olivares-Navarrete R, Boyan BD, Schwartz Z.

Acta Biomater. 2016 Jul 15;39:44-54. doi: 10.1016/j.actbio.2016.04.046. Epub 2016 Apr 30.

PMID:
27142254
13.

Involvement of p38 MAPK-mediated signaling in the calpeptin-mediated suppression of myogenic differentiation and fusion in C2C12 cells.

Kook SH, Choi KC, Son YO, Lee KY, Hwang IH, Lee HJ, Chung WT, Lee CB, Park JS, Lee JC.

Mol Cell Biochem. 2008 Mar;310(1-2):85-92. Epub 2007 Dec 4.

PMID:
18057999
14.

An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation.

Alwan R, Bruel AL, Da Silva A, Blanquet V, Bouhouche K.

Exp Cell Res. 2017 Oct 1;359(1):145-153. doi: 10.1016/j.yexcr.2017.07.037. Epub 2017 Aug 3.

PMID:
28782556
15.

Transforming growth factor-beta-activated kinase 1 is an essential regulator of myogenic differentiation.

Bhatnagar S, Kumar A, Makonchuk DY, Li H, Kumar A.

J Biol Chem. 2010 Feb 26;285(9):6401-11. doi: 10.1074/jbc.M109.064063. Epub 2009 Dec 27.

16.

Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

Goh Q, Dearth CL, Corbett JT, Pierre P, Chadee DN, Pizza FX.

Exp Cell Res. 2015 Feb 15;331(2):292-308. doi: 10.1016/j.yexcr.2014.09.032. Epub 2014 Sep 30.

17.

Nuclear exclusion of forkhead box O and Elk1 and activation of nuclear factor-kappaB are required for C2C12-RasV12C40 myoblast differentiation.

De Alvaro C, Nieto-Vazquez I, Rojas JM, Lorenzo M.

Endocrinology. 2008 Feb;149(2):793-801. Epub 2007 Oct 25.

PMID:
17962350
18.

Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation.

Nguyen NU, Wang HV.

PLoS One. 2015 Apr 14;10(4):e0124762. doi: 10.1371/journal.pone.0124762. eCollection 2015.

19.

TGF-β-activated kinase 1 (TAK1) and apoptosis signal-regulating kinase 1 (ASK1) interact with the promyogenic receptor Cdo to promote myogenic differentiation via activation of p38MAPK pathway.

Tran P, Ho SM, Kim BG, Vuong TA, Leem YE, Bae GU, Kang JS.

J Biol Chem. 2012 Apr 6;287(15):11602-15. doi: 10.1074/jbc.M112.351601. Epub 2012 Feb 15.

20.

S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression.

Tubaro C, Arcuri C, Giambanco I, Donato R.

J Cell Physiol. 2010 Apr;223(1):270-82. doi: 10.1002/jcp.22035.

PMID:
20069545

Supplemental Content

Support Center