Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Kinetic characterization of the critical step in HIV-1 protease maturation.

Sadiq SK, Noé F, De Fabritiis G.

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20449-54. doi: 10.1073/pnas.1210983109.

2.

Autoprocessing of HIV-1 protease is tightly coupled to protein folding.

Louis JM, Clore GM, Gronenborn AM.

Nat Struct Biol. 1999 Sep;6(9):868-75.

PMID:
10467100
3.

The maturation of HIV-1 protease precursor studied by discrete molecular dynamics.

Kimura S, Caldarini M, Broglia RA, Dokholyan NV, Tiana G.

Proteins. 2014 Apr;82(4):633-9. doi: 10.1002/prot.24440.

4.

Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing.

Sadiq SK, De Fabritiis G.

Proteins. 2010 Nov 1;78(14):2873-85. doi: 10.1002/prot.22806.

PMID:
20715057
5.

Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions.

Huang L, Li Y, Chen C.

Retrovirology. 2011 Oct 10;8:79. doi: 10.1186/1742-4690-8-79.

6.

Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.

Tang C, Louis JM, Aniana A, Suh JY, Clore GM.

Nature. 2008 Oct 2;455(7213):693-6. doi: 10.1038/nature07342.

7.

Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.

Sayer JM, Agniswamy J, Weber IT, Louis JM.

Protein Sci. 2010 Nov;19(11):2055-72. doi: 10.1002/pro.486.

8.

Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.

Agniswamy J, Sayer JM, Weber IT, Louis JM.

Biochemistry. 2012 Feb 7;51(5):1041-50. doi: 10.1021/bi201809s.

9.

Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations.

Deng NJ, Zheng W, Gallicchio E, Levy RM.

J Am Chem Soc. 2011 Jun 22;133(24):9387-94. doi: 10.1021/ja2008032.

10.

Mechanism of autoprocessing of a mini-precursor of the aspartic protease of human immunodeficiency virus type 1.

Co E, Koelsch G, Hartsuck JA, Tang J.

Adv Exp Med Biol. 1995;362:379-86. No abstract available.

PMID:
8540347
11.

Protein promiscuity: drug resistance and native functions--HIV-1 case.

Fernández A, Tawfik DS, Berkhout B, Sanders R, Kloczkowski A, Sen T, Jernigan B.

J Biomol Struct Dyn. 2005 Jun;22(6):615-24.

PMID:
15842167
12.

Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.

Karthik S, Senapati S.

Proteins. 2011 Jun;79(6):1830-40. doi: 10.1002/prot.23008.

PMID:
21465560
13.

Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations.

Pietrucci F, Marinelli F, Carloni P, Laio A.

J Am Chem Soc. 2009 Aug 26;131(33):11811-8. doi: 10.1021/ja903045y.

PMID:
19645490
14.
15.

Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.

Naicker P, Achilonu I, Fanucchi S, Fernandes M, Ibrahim MA, Dirr HW, Soliman ME, Sayed Y.

J Biomol Struct Dyn. 2013 Dec;31(12):1370-80. doi: 10.1080/07391102.2012.736774.

PMID:
23140382
16.

Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease.

de Vera IM, Smith AN, Dancel MC, Huang X, Dunn BM, Fanucci GE.

Biochemistry. 2013 May 14;52(19):3278-88. doi: 10.1021/bi400109d.

17.

Drug pressure selected mutations in HIV-1 protease alter flap conformations.

Galiano L, Ding F, Veloro AM, Blackburn ME, Simmerling C, Fanucci GE.

J Am Chem Soc. 2009 Jan 21;131(2):430-1. doi: 10.1021/ja807531v.

18.

Flap opening in HIV-1 protease simulated by 'activated' molecular dynamics.

Collins JR, Burt SK, Erickson JW.

Nat Struct Biol. 1995 Apr;2(4):334-8.

PMID:
7796268
19.

A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation.

Wondrak EM, Nashed NT, Haber MT, Jerina DM, Louis JM.

J Biol Chem. 1996 Feb 23;271(8):4477-81.

Items per page

Supplemental Content

Support Center