Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.
2.

Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media.

Luo Z, Deng Y, Wang K, Lian L, Yang X, Luo Q.

J Biomed Opt. 2015 Feb;20(2):25002. doi: 10.1117/1.JBO.20.2.025002.

PMID:
25649626
3.
4.

Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.

Liebert A, Wabnitz H, Zołek N, Macdonald R.

Opt Express. 2008 Aug 18;16(17):13188-202.

PMID:
18711557
5.

Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations.

Xie H, Liu H, Svenmarker P, Axelsson J, Xu CT, Gräfe S, Lundeman JH, Cheng HP, Svanberg S, Bendsoe N, Andersen PE, Svanberg K, Andersson-Engels S.

J Biomed Opt. 2011 Jun;16(6):066002. doi: 10.1117/1.3585675.

PMID:
21721803
6.

Equivalence of four Monte Carlo methods for photon migration in turbid media.

Sassaroli A, Martelli F.

J Opt Soc Am A Opt Image Sci Vis. 2012 Oct 1;29(10):2110-7. doi: 10.1364/JOSAA.29.002110.

PMID:
23201658
7.

Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.

Jiang X, Deng Y, Luo Z, Wang K, Lian L, Yang X, Meglinski I, Luo Q.

Opt Express. 2014 Dec 29;22(26):31948-65. doi: 10.1364/OE.22.031948.

PMID:
25607163
8.

Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.

Sassaroli A.

Opt Lett. 2011 Jun 1;36(11):2095-7. doi: 10.1364/OL.36.002095.

9.

Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency.

Chen J, Intes X.

Med Phys. 2011 Oct;38(10):5788-98. doi: 10.1118/1.3641827.

10.

Optimization of the Monte Carlo code for modeling of photon migration in tissue.

Zołek NS, Liebert A, Maniewski R.

Comput Methods Programs Biomed. 2006 Oct;84(1):50-7. Epub 2006 Sep 7.

PMID:
16962201
11.
12.
13.

Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

Martinez-Rovira I, Sempau J, Prezado Y.

Med Phys. 2012 May;39(5):2829-38. doi: 10.1118/1.4705351.

PMID:
22559655
14.

Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.

Pan T, Rasmussen JC, Lee JH, Sevick-Muraca EM.

Med Phys. 2007 Apr;34(4):1298-311.

PMID:
17500461
15.

A Monte Carlo study of fluorescence generation probability in a two-layered tissue model.

Milej D, Gerega A, Wabnitz H, Liebert A.

Phys Med Biol. 2014 Mar 21;59(6):1407-24. doi: 10.1088/0031-9155/59/6/1407. Epub 2014 Feb 28.

PMID:
24584056
16.

Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media.

Palmer GM, Ramanujam N.

J Biomed Opt. 2008 Mar-Apr;13(2):024017. doi: 10.1117/1.2907161.

17.

Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.

Martinelli M, Gardner A, Cuccia D, Hayakawa C, Spanier J, Venugopalan V.

Opt Express. 2011 Sep 26;19(20):19627-42. doi: 10.1364/OE.19.019627.

18.

Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.

Gorshkov AV, Kirillin MY.

J Biomed Opt. 2015 Aug;20(8):85002. doi: 10.1117/1.JBO.20.8.085002.

PMID:
26249663
19.

Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model.

Deng Y, Luo Z, Jiang X, Xie W, Luo Q.

Opt Lett. 2015 Jul 1;40(13):3129-32. doi: 10.1364/OL.40.003129.

PMID:
26125384
20.

Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium.

Kanick SC, Robinson DJ, Sterenborg HJ, Amelink A.

Opt Lett. 2012 Mar 1;37(5):948-50. doi: 10.1364/OL.37.000948.

PMID:
22378448

Supplemental Content

Support Center