Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis.

McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y.

J Neurosci. 2012 Nov 7;32(45):15704-14. doi: 10.1523/JNEUROSCI.2392-12.2012.

2.

Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1.

Di Nardo A, Wertz MH, Kwiatkowski E, Tsai PT, Leech JD, Greene-Colozzi E, Goto J, Dilsiz P, Talos DM, Clish CB, Kwiatkowski DJ, Sahin M.

Hum Mol Genet. 2014 Jul 15;23(14):3865-74. doi: 10.1093/hmg/ddu101. Epub 2014 Mar 5.

3.

Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.

Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M.

Hum Mol Genet. 2011 Feb 1;20(3):445-54. doi: 10.1093/hmg/ddq491. Epub 2010 Nov 9.

4.

Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123).

Crowell B, Lee GH, Nikolaeva I, Dal Pozzo V, D'Arcangelo G.

eNeuro. 2015 Oct 22;2(6). pii: ENEURO.0046-15.2015. doi: 10.1523/ENEURO.0046-15.2015. eCollection 2015 Nov-Dec.

5.

Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex.

Zhang B, McDaniel SS, Rensing NR, Wong M.

PLoS One. 2013;8(2):e57445. doi: 10.1371/journal.pone.0057445. Epub 2013 Feb 20.

6.

Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex.

Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, Gallazzini M, Olson EN, Lam H, Henske EP, Dong Z, Apte U, Pallet N, Johnson RL, Terzi F, Kwiatkowski DJ, Scoazec JY, Martignoni G, Pende M.

J Exp Med. 2014 Oct 20;211(11):2249-63. doi: 10.1084/jem.20140341. Epub 2014 Oct 6.

7.

Mammalian target of rapamycin (mTOR) pathways in neurological diseases.

Wong M.

Biomed J. 2013 Mar-Apr;36(2):40-50. doi: 10.4103/2319-4170.110365. Review.

8.

Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent.

Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski DJ, Yu JJ, Henske EP.

Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12455-60. doi: 10.1073/pnas.1104361108. Epub 2011 Jul 11.

9.

Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy.

Curatolo P.

Pediatr Neurol. 2015 Mar;52(3):281-9. doi: 10.1016/j.pediatrneurol.2014.10.028. Epub 2014 Nov 20. Review.

PMID:
25591831
10.

Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis.

Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL.

Neuron. 2013 May 8;78(3):510-22. doi: 10.1016/j.neuron.2013.03.017.

11.

Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model.

Mi R, Ma J, Zhang D, Li L, Zhang H.

J Genet Genomics. 2009 Jun;36(6):355-61. doi: 10.1016/S1673-8527(08)60124-1.

PMID:
19539245
12.

Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.

Wong M.

Epilepsia. 2010 Jan;51(1):27-36. doi: 10.1111/j.1528-1167.2009.02341.x. Epub 2009 Oct 8. Review.

13.

TORC1-dependent epilepsy caused by acute biallelic Tsc1 deletion in adult mice.

Abs E, Goorden SM, Schreiber J, Overwater IE, Hoogeveen-Westerveld M, Bruinsma CF, Aganović E, Borgesius NZ, Nellist M, Elgersma Y.

Ann Neurol. 2013 Oct;74(4):569-79. doi: 10.1002/ana.23943. Epub 2013 Sep 10.

PMID:
23720219
14.

Inhibition of mammalian target of rapamycin with rapamycin reverses hypertrophic cardiomyopathy in mice with cardiomyocyte-specific knockout of PTEN.

Xu X, Roe ND, Weiser-Evans MC, Ren J.

Hypertension. 2014 Apr;63(4):729-39. doi: 10.1161/HYPERTENSIONAHA.113.02526. Epub 2014 Jan 20. Erratum in: Hypertension. 2016 Mar;67(3):e5.

15.

Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex.

Zeng LH, Xu L, Gutmann DH, Wong M.

Ann Neurol. 2008 Apr;63(4):444-53. doi: 10.1002/ana.21331.

16.
17.

mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis.

Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW, Latimer-Bowman E, Nicholson SL, Harkness W, Cross JH, Paine SM, Jacques TS.

Acta Neuropathol. 2013 Aug;126(2):207-18. doi: 10.1007/s00401-013-1135-4. Epub 2013 Jun 2.

PMID:
23728790
18.

Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations.

Wong M.

Exp Neurol. 2013 Jun;244:22-6. doi: 10.1016/j.expneurol.2011.10.002. Epub 2011 Oct 8. Review.

19.

Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex.

Rensing N, Han L, Wong M.

Epilepsia. 2015 Jul;56(7):1088-97. doi: 10.1111/epi.13031. Epub 2015 Jun 29.

20.

Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner.

Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH.

Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15996-6001. doi: 10.1073/pnas.1019012108. Epub 2011 Sep 6.

Supplemental Content

Support Center