Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study.

Joshi S, Saylor BT, Wang W, Peck AB, Khan SR.

PLoS One. 2012;7(10):e47738. doi: 10.1371/journal.pone.0047738.

3.

Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria.

Khan SR, Joshi S, Wang W, Peck AB.

Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1285-95. doi: 10.1152/ajprenal.00057.2014.

4.

Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys.

Joshi S, Wang W, Peck AB, Khan SR.

J Urol. 2015 May;193(5):1684-91. doi: 10.1016/j.juro.2014.11.093.

5.

Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis.

Li CY, Deng YL, Sun BH.

Int Urol Nephrol. 2009 Dec;41(4):823-33. doi: 10.1007/s11255-009-9534-0.

PMID:
19241135
6.

Chronic L-arginine administration increases oxidative and nitrosative stress in rat hyperoxaluric kidneys and excessive crystal deposition.

Huang HS, Ma MC, Chen J.

Am J Physiol Renal Physiol. 2008 Aug;295(2):F388-96. doi: 10.1152/ajprenal.00405.2007.

7.
8.
9.
10.

Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury.

Tsuji H, Wang W, Sunil J, Shimizu N, Yoshimura K, Uemura H, Peck AB, Khan SR.

World J Urol. 2016 Jan;34(1):89-95. doi: 10.1007/s00345-015-1563-y.

PMID:
25981400
11.

Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis.

Li CY, Deng YL, Sun BH.

Urol Res. 2009 Aug;37(4):211-20. doi: 10.1007/s00240-009-0197-1.

PMID:
19513707
12.

Apocynin improves erectile function in diabetic rats through regulation of NADPH oxidase expression.

Li M, Zhuan L, Wang T, Rao K, Yang J, Yang J, Quan W, Liu J, Ye Z.

J Sex Med. 2012 Dec;9(12):3041-50. doi: 10.1111/j.1743-6109.2012.02960.x.

PMID:
23088159
13.
14.

Angiotensin preconditioning of the heart: evidence for redox signaling.

Das S, Engelman RM, Maulik N, Das DK.

Cell Biochem Biophys. 2006;44(1):103-10.

PMID:
16456238
15.

NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin.

Qin F, Patel R, Yan C, Liu W.

Free Radic Biol Med. 2006 Jan 15;40(2):236-46.

PMID:
16413406
16.

Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition.

Liu Y, Liu Y, Liu X, Chen J, Zhang K, Huang F, Wang JF, Tang W, Huang H.

J Am Heart Assoc. 2015 Jun 24;4(7). pii: e001598. doi: 10.1161/JAHA.114.001598.

17.

ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

Winiarska K, Jarzyna R, Dzik JM, Jagielski AK, Grabowski M, Nowosielska A, Focht D, Sierakowski B.

Free Radic Biol Med. 2015 Apr;81:13-21. doi: 10.1016/j.freeradbiomed.2014.12.024.

PMID:
25601753
19.

Apocynin attenuates pressure overload-induced cardiac hypertrophy in rats by reducing levels of reactive oxygen species.

Liu J, Zhou J, An W, Lin Y, Yang Y, Zang W.

Can J Physiol Pharmacol. 2010 Jul;88(7):745-52. doi: 10.1139/y10-063.

PMID:
20651822
Items per page

Supplemental Content

Support Center