Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Population genomics of Chlamydia trachomatis: insights on drift, selection, recombination, and population structure.

Joseph SJ, Didelot X, Rothschild J, de Vries HJ, Morré SA, Read TD, Dean D.

Mol Biol Evol. 2012 Dec;29(12):3933-46. doi: 10.1093/molbev/mss198. Epub 2012 Aug 13.

2.

Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages.

Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, Hsu R, Read TD, Dean D.

MBio. 2011 May 3;2(3):e00045-11. doi: 10.1128/mBio.00045-11. Print 2011.

3.

Interplay of recombination and selection in the genomes of Chlamydia trachomatis.

Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD.

Biol Direct. 2011 May 26;6:28. doi: 10.1186/1745-6150-6-28.

4.

Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing.

Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, Lewis DA, Spratt BG, Unemo M, Persson K, Bjartling C, Brunham R, de Vries HJ, Morré SA, Speksnijder A, Bébéar CM, Clerc M, de Barbeyrac B, Parkhill J, Thomson NR.

Nat Genet. 2012 Mar 11;44(4):413-9, S1. doi: 10.1038/ng.2214.

5.

Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates.

Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O'Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS, Clarke IN.

Genome Res. 2008 Jan;18(1):161-71. Epub 2007 Nov 21.

6.

Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.

Borges V, Gomes JP.

Infect Genet Evol. 2015 Jun;32:74-88. doi: 10.1016/j.meegid.2015.02.026. Epub 2015 Mar 3.

PMID:
25745888
7.

Chlamydia trachomatis from Australian Aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages.

Andersson P, Harris SR, Seth Smith HM, Hadfield J, O'Neill C, Cutcliffe LT, Douglas FP, Asche LV, Mathews JD, Hutton SI, Sarovich DS, Tong SY, Clarke IN, Thomson NR, Giffard PM.

Nat Commun. 2016 Feb 25;7:10688. doi: 10.1038/ncomms10688.

8.

Predicting phenotype and emerging strains among Chlamydia trachomatis infections.

Dean D, Bruno WJ, Wan R, Gomes JP, Devignot S, Mehari T, de Vries HJ, Morré SA, Myers G, Read TD, Spratt BG.

Emerg Infect Dis. 2009 Sep;15(9):1385-94. doi: 10.3201/eid1509.090272.

9.

Genome expansion in bacteria: the curios case of Chlamydia trachomatis.

Bohlin J.

BMC Res Notes. 2015 Sep 30;8:512. doi: 10.1186/s13104-015-1464-6.

10.

Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates.

Almeida F, Borges V, Ferreira R, Borrego MJ, Gomes JP, Mota LJ.

J Bacteriol. 2012 Dec;194(23):6574-85. doi: 10.1128/JB.01428-12. Epub 2012 Oct 5.

12.

Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain.

Seth-Smith HM, Harris SR, Persson K, Marsh P, Barron A, Bignell A, Bjartling C, Clark L, Cutcliffe LT, Lambden PR, Lennard N, Lockey SJ, Quail MA, Salim O, Skilton RJ, Wang Y, Holland MJ, Parkhill J, Thomson NR, Clarke IN.

BMC Genomics. 2009 May 21;10:239. doi: 10.1186/1471-2164-10-239.

14.

High Prevalence of Co-Infections by Invasive and Non-Invasive Chlamydia trachomatis Genotypes during the Lymphogranuloma Venereum Outbreak in Spain.

Rodriguez-Dominguez M, Gonzalez-Alba JM, Puerta T, Menendez B, Sanchez-Diaz AM, Canton R, del Romero J, Galan JC.

PLoS One. 2015 May 12;10(5):e0126145. doi: 10.1371/journal.pone.0126145. eCollection 2015.

15.

Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots.

Gomes JP, Bruno WJ, Nunes A, Santos N, Florindo C, Borrego MJ, Dean D.

Genome Res. 2007 Jan;17(1):50-60. Epub 2006 Nov 7.

16.

Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis.

Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM, Langerak AA, van der Ende A.

BMC Microbiol. 2008 Feb 28;8:42. doi: 10.1186/1471-2180-8-42.

17.

Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains.

Carlson JH, Porcella SF, McClarty G, Caldwell HD.

Infect Immun. 2005 Oct;73(10):6407-18.

18.

In silico scrutiny of genes revealing phylogenetic congruence with clinical prevalence or tropism properties of Chlamydia trachomatis strains.

Ferreira R, Antelo M, Nunes A, Borges V, Damião V, Borrego MJ, Gomes JP.

G3 (Bethesda). 2014 Nov 5;5(1):9-19. doi: 10.1534/g3.114.015354.

19.

Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis.

Klint M, Thollesson M, Bongcam-Rudloff E, Birkelund S, Nilsson A, Herrmann B.

BMC Microbiol. 2010 Mar 17;10:81. doi: 10.1186/1471-2180-10-81.

20.

Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States.

Millman K, Black CM, Johnson RE, Stamm WE, Jones RB, Hook EW, Martin DH, Bolan G, Tavaré S, Dean D.

J Bacteriol. 2004 Apr;186(8):2457-65.

Supplemental Content

Support Center