Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

The NLRP12 inflammasome recognizes Yersinia pestis.

Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E.

Immunity. 2012 Jul 27;37(1):96-107. doi: 10.1016/j.immuni.2012.07.006. Erratum in: Immunity. 2012 Sep 21;37(3):588.

2.

The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation.

Ratner D, Orning MP, Proulx MK, Wang D, Gavrilin MA, Wewers MD, Alnemri ES, Johnson PF, Lee B, Mecsas J, Kayagaki N, Goguen JD, Lien E.

PLoS Pathog. 2016 Dec 2;12(12):e1006035. doi: 10.1371/journal.ppat.1006035. eCollection 2016 Dec.

3.

Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence.

Ratner D, Orning MP, Starheim KK, Marty-Roix R, Proulx MK, Goguen JD, Lien E.

J Biol Chem. 2016 May 6;291(19):9894-905. doi: 10.1074/jbc.M115.697698. Epub 2016 Feb 16. Erratum in: J Biol Chem. 2016 Jul 29;291(31):16417.

4.

A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB, Bliska JB.

PLoS Pathog. 2011 Apr;7(4):e1002026. doi: 10.1371/journal.ppat.1002026. Epub 2011 Apr 21.

5.

Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection.

Dhariwala MO, Olson RM, Anderson DM.

Infect Immun. 2017 Oct 18;85(11). pii: e00570-17. doi: 10.1128/IAI.00570-17. Print 2017 Nov.

6.

A live attenuated strain of Yersinia pestis KIM as a vaccine against plague.

Sun W, Six D, Kuang X, Roland KL, Raetz CR, Curtiss R 3rd.

Vaccine. 2011 Apr 5;29(16):2986-98. doi: 10.1016/j.vaccine.2011.01.099. Epub 2011 Feb 12. Erratum in: Vaccine. 2011 Aug 5;29(34):5820.

7.

Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration.

Robinson RT, Khader SA, Locksley RM, Lien E, Smiley ST, Cooper AM.

J Immunol. 2008 Oct 15;181(8):5560-7.

8.

IL-17 contributes to cell-mediated defense against pulmonary Yersinia pestis infection.

Lin JS, Kummer LW, Szaba FM, Smiley ST.

J Immunol. 2011 Feb 1;186(3):1675-84. doi: 10.4049/jimmunol.1003303. Epub 2010 Dec 20.

9.

A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

Spear AM, Rana RR, Jenner DC, Flick-Smith HC, Oyston PC, Simpson P, Matthews SJ, Byrne B, Atkins HS.

Microbiology. 2012 Jun;158(Pt 6):1593-606. doi: 10.1099/mic.0.055012-0. Epub 2012 Mar 8.

PMID:
22403187
10.

NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

Silveira TN, Gomes MT, Oliveira LS, Campos PC, Machado GG, Oliveira SC.

Eur J Immunol. 2017 Jan;47(1):51-59. doi: 10.1002/eji.201646502. Epub 2016 Dec 5.

PMID:
27800616
11.

Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

Ataide MA, Andrade WA, Zamboni DS, Wang D, Souza Mdo C, Franklin BS, Elian S, Martins FS, Pereira D, Reed G, Fitzgerald KA, Golenbock DT, Gazzinelli RT.

PLoS Pathog. 2014 Jan;10(1):e1003885. doi: 10.1371/journal.ppat.1003885. Epub 2014 Jan 16. Erratum in: PLoS Pathog. 2014 Jun;10(6):e1004258.

13.

D27-pLpxL, an avirulent strain of Yersinia pestis, primes T cells that protect against pneumonic plague.

Szaba FM, Kummer LW, Wilhelm LB, Lin JS, Parent MA, Montminy-Paquette SW, Lien E, Johnson LL, Smiley ST.

Infect Immun. 2009 Oct;77(10):4295-304. doi: 10.1128/IAI.00273-09. Epub 2009 Jul 20.

14.

The multifaceted nature of NLRP12.

Tuncer S, Fiorillo MT, Sorrentino R.

J Leukoc Biol. 2014 Dec;96(6):991-1000. doi: 10.1189/jlb.3RU0514-265RR. Epub 2014 Sep 23.

15.

The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells.

Kerschen EJ, Cohen DA, Kaplan AM, Straley SC.

Infect Immun. 2004 Aug;72(8):4589-602.

16.

Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.

Vagima Y, Zauberman A, Levy Y, Gur D, Tidhar A, Aftalion M, Shafferman A, Mamroud E.

PLoS Pathog. 2015 May 14;11(5):e1004893. doi: 10.1371/journal.ppat.1004893. eCollection 2015 May.

17.

The weak interaction of LcrV and TLR2 does not contribute to the virulence of Yersinia pestis.

Reithmeier-Rost D, Hill J, Elvin SJ, Williamson D, Dittmann S, Schmid A, Wilharm G, Sing A.

Microbes Infect. 2007 Jul;9(8):997-1002. Epub 2007 Apr 12.

PMID:
17556003
18.

Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

Hajjar AM, Ernst RK, Fortuno ES 3rd, Brasfield AS, Yam CS, Newlon LA, Kollmann TR, Miller SI, Wilson CB.

PLoS Pathog. 2012;8(10):e1002963. doi: 10.1371/journal.ppat.1002963. Epub 2012 Oct 11.

19.

Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death.

Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E.

Proc Natl Acad Sci U S A. 2014 May 20;111(20):7391-6. doi: 10.1073/pnas.1403477111. Epub 2014 May 5.

20.

Supplemental Content

Support Center