Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

Glycan recognition by the Bacteroidetes Sus-like systems.

Bolam DN, Koropatkin NM.

Curr Opin Struct Biol. 2012 Oct;22(5):563-9. doi: 10.1016/j.sbi.2012.06.006. Review.

PMID:
22819666
2.

Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.

Tauzin AS, Kwiatkowski KJ, Orlovsky NI, Smith CJ, Creagh AL, Haynes CA, Wawrzak Z, Brumer H, Koropatkin NM.

MBio. 2016 Apr 26;7(2):e02134-15. doi: 10.1128/mBio.02134-15.

3.

Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI.

PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221.

4.

Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.

Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC.

MBio. 2014 Sep 9;5(5):e01441-14. doi: 10.1128/mBio.01441-14.

5.

Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont.

Koropatkin N, Martens EC, Gordon JI, Smith TJ.

Biochemistry. 2009 Feb 24;48(7):1532-42. doi: 10.1021/bi801942a.

6.

A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism.

Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI.

Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8834-9.

7.

Structural basis for nutrient acquisition by dominant members of the human gut microbiota.

Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, Zheng H, Robinson CV, Winterhalter M, Kleinekathöfer U, Bolam DN, van den Berg B.

Nature. 2017 Jan 19;541(7637):407-411. doi: 10.1038/nature20828.

PMID:
28077872
8.

Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.

Martens EC, Koropatkin NM, Smith TJ, Gordon JI.

J Biol Chem. 2009 Sep 11;284(37):24673-7. doi: 10.1074/jbc.R109.022848. Review.

9.

The Sus operon: a model system for starch uptake by the human gut Bacteroidetes.

Foley MH, Cockburn DW, Koropatkin NM.

Cell Mol Life Sci. 2016 Jul;73(14):2603-17. doi: 10.1007/s00018-016-2242-x. Review.

PMID:
27137179
10.

Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization.

Zhu Y, Kwiatkowski KJ, Yang T, Kharade SS, Bahr CM, Koropatkin NM, Liu W, McBride MJ.

Appl Microbiol Biotechnol. 2015 Aug;99(15):6339-50. doi: 10.1007/s00253-015-6555-8.

PMID:
25846333
11.

Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803.

Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, Teeling H, Amann RI, Schweder T.

ISME J. 2014 Jul;8(7):1492-502. doi: 10.1038/ismej.2014.4.

12.

Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont.

Martens EC, Roth R, Heuser JE, Gordon JI.

J Biol Chem. 2009 Jul 3;284(27):18445-57. doi: 10.1074/jbc.M109.008094.

13.

Phylum-wide general protein O-glycosylation system of the Bacteroidetes.

Coyne MJ, Fletcher CM, Chatzidaki-Livanis M, Posch G, Schaffer C, Comstock LE.

Mol Microbiol. 2013 May;88(4):772-83. doi: 10.1111/mmi.12220.

14.

Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose.

Mackenzie AK, Pope PB, Pedersen HL, Gupta R, Morrison M, Willats WG, Eijsink VG.

Appl Environ Microbiol. 2012 Aug;78(16):5935-7. doi: 10.1128/AEM.01164-12.

15.

A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system.

Lowe EC, Baslé A, Czjzek M, Firbank SJ, Bolam DN.

Proc Natl Acad Sci U S A. 2012 May 8;109(19):7298-303. doi: 10.1073/pnas.1200479109.

16.

A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin.

Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, Pope PB.

Biotechnol Biofuels. 2016 Nov 28;9:260.

17.

Solution NMR analyses of the C-type carbohydrate recognition domain of DC-SIGNR protein reveal different binding modes for HIV-derived oligosaccharides and smaller glycan fragments.

Probert F, Whittaker SB, Crispin M, Mitchell DA, Dixon AM.

J Biol Chem. 2013 Aug 2;288(31):22745-57. doi: 10.1074/jbc.M113.458299.

18.

A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility.

Mackenzie AK, Naas AE, Kracun SK, Schückel J, Fangel JU, Agger JW, Willats WG, Eijsink VG, Pope PB.

Appl Environ Microbiol. 2015 Jan;81(1):187-95. doi: 10.1128/AEM.02858-14.

19.

Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.

Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC.

MBio. 2015 Nov 10;6(6):e01282-15. doi: 10.1128/mBio.01282-15.

20.

ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.

Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V.

J Bacteriol. 2005 Dec;187(24):8300-11.

Items per page

Supplemental Content

Support Center