Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Complete 6-deoxy-D-altro-heptose biosynthesis pathway from Campylobacter jejuni: more complex than anticipated.

McCallum M, Shaw SD, Shaw GS, Creuzenet C.

J Biol Chem. 2012 Aug 24;287(35):29776-88. doi: 10.1074/jbc.M112.390492. Epub 2012 Jul 11.

2.

Comparison of predicted epimerases and reductases of the Campylobacter jejuni D-altro- and L-gluco-heptose synthesis pathways.

McCallum M, Shaw GS, Creuzenet C.

J Biol Chem. 2013 Jul 5;288(27):19569-80. doi: 10.1074/jbc.M113.468066. Epub 2013 May 20.

3.

Characterization of the dehydratase WcbK and the reductase WcaG involved in GDP-6-deoxy-manno-heptose biosynthesis in Campylobacter jejuni.

McCallum M, Shaw GS, Creuzenet C.

Biochem J. 2011 Oct 15;439(2):235-48. doi: 10.1042/BJ20110890.

PMID:
21711244
4.

Elucidating the formation of 6-deoxyheptose: biochemical characterization of the GDP-D-glycero-d-manno-heptose C6 dehydratase, DmhA, and its associated C4 reductase, DmhB.

Butty FD, Aucoin M, Morrison L, Ho N, Shaw G, Creuzenet C.

Biochemistry. 2009 Aug 18;48(32):7764-75. doi: 10.1021/bi901065t.

PMID:
19610666
5.

Role of capsular modified heptose in the virulence of Campylobacter jejuni.

Wong A, Lange D, Houle S, Arbatsky NP, Valvano MA, Knirel YA, Dozois CM, Creuzenet C.

Mol Microbiol. 2015 Jun;96(6):1136-58. doi: 10.1111/mmi.12995. Epub 2015 Apr 11.

6.

Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses.

Karlyshev AV, Champion OL, Churcher C, Brisson JR, Jarrell HC, Gilbert M, Brochu D, St Michael F, Li J, Wakarchuk WW, Goodhead I, Sanders M, Stevens K, White B, Parkhill J, Wren BW, Szymanski CM.

Mol Microbiol. 2005 Jan;55(1):90-103.

7.

Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies.

Poly F, Read TD, Chen YH, Monteiro MA, Serichantalergs O, Pootong P, Bodhidatta L, Mason CJ, Rockabrand D, Baqar S, Porter CK, Tribble D, Darsley M, Guerry P.

Infect Immun. 2008 Dec;76(12):5655-67. doi: 10.1128/IAI.00780-08. Epub 2008 Sep 22.

8.

Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose.

Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P.

J Biol Chem. 2001 Jun 15;276(24):20935-44. Epub 2001 Mar 28.

9.

Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.

Kim MS, Lim A, Yang SW, Park J, Lee D, Shin DH.

Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):658-68. doi: 10.1107/S0907444913001030. Epub 2013 Mar 14.

PMID:
23519675
10.

The mechanism of the reaction catalyzed by ADP-beta-L-glycero-D-manno-heptose 6-epimerase.

Read JA, Ahmed RA, Morrison JP, Coleman WG Jr, Tanner ME.

J Am Chem Soc. 2004 Jul 28;126(29):8878-9.

PMID:
15264802
11.

Structural studies of the O-antigens of Yersinia pseudotuberculosis O:2a and mutants thereof with impaired 6-deoxy-D-manno-heptose biosynthesis pathway.

Kondakova AN, Ho N, Bystrova OV, Shashkov AS, Lindner B, Creuzenet C, Knirel YA.

Carbohydr Res. 2008 Jun 9;343(8):1383-9. doi: 10.1016/j.carres.2008.04.003. Epub 2008 Apr 7.

PMID:
18440499
12.

General assay for enzymes in the heptose biosynthesis pathways using electrospray ionization mass spectrometry.

Park J, Lee D, Seo EK, Ryu JS, Shin DH.

Appl Microbiol Biotechnol. 2017 Jun;101(11):4521-4532. doi: 10.1007/s00253-017-8148-1. Epub 2017 Mar 9.

PMID:
28280867
13.

Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: towards antivirulence molecules targeting lipopolysaccharide biosynthesis.

Durka M, Tikad A, PĂ©rion R, Bosco M, Andaloussi M, Floquet S, Malacain E, Moreau F, Oxoby M, Gerusz V, Vincent SP.

Chemistry. 2011 Sep 26;17(40):11305-13. doi: 10.1002/chem.201100396. Epub 2011 Aug 26. Erratum in: Chemistry. 2011 Dec 16;17(51):14319.

PMID:
21922563
14.

Structural analysis of the capsular polysaccharide from Campylobacter jejuni RM1221.

Gilbert M, Mandrell RE, Parker CT, Li J, Vinogradov E.

Chembiochem. 2007 Apr 16;8(6):625-31.

PMID:
17335095
15.

A two-base mechanism for Escherichia coli ADP-L-glycero-D-manno-heptose 6-epimerase.

Morrison JP, Tanner ME.

Biochemistry. 2007 Mar 27;46(12):3916-24. Epub 2007 Feb 23.

PMID:
17316025
16.

Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).

Wang L, Huang H, Nguyen HH, Allen KN, Mariano PS, Dunaway-Mariano D.

Biochemistry. 2010 Feb 16;49(6):1072-81. doi: 10.1021/bi902018y.

18.

Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.

Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M.

J Mol Biol. 2000 Oct 13;303(1):77-91.

PMID:
11021971
19.

The crystal structure of the Y140F mutant of ADP-L-glycero-D-manno-heptose 6-epimerase bound to ADP-beta-D-mannose suggests a one base mechanism.

Kowatz T, Morrison JP, Tanner ME, Naismith JH.

Protein Sci. 2010 Jul;19(7):1337-43. doi: 10.1002/pro.410.

20.

The biosynthesis and biological role of 6-deoxyheptose in the lipopolysaccharide O-antigen of Yersinia pseudotuberculosis.

Ho N, Kondakova AN, Knirel YA, Creuzenet C.

Mol Microbiol. 2008 Apr;68(2):424-47. doi: 10.1111/j.1365-2958.2008.06163.x. Epub 2008 Feb 19.

Supplemental Content

Support Center